
z/OS

MVS Using the Subsystem Interface

SA22-7642-01

IBM

z/OS

MVS Using the Subsystem Interface

SA22-7642-01

IBM

Note
Before using this information and the product it supports, be sure to read the general information under “Notices” on
page 275.

Second Edition, September 2002

This is a major revision of SA22-7642-00.

This edition applies to Version 1 Release 4 of z/OS (5694-A01), Version 1 Release 4 of z/OS.e (5655-G52), and to
all subsequent releases and modifications until otherwise indicated in new editions.

Order documents through your IBM® representative or the IBM branch office serving your locality. Documents are not
stocked at the address below.

IBM welcomes your comments. A form for readers’ comments may be provided at the back of this document, or you
may address your comments to the following address:

International Business Machines Corporation
Department 55JA, Mail Station P384
2455 South Road
Poughkeepsie, NY 12601-5400
United States of America

FAX (United States & Canada): 1+845+432-9405
FAX (Other Countries):

Your International Access Code +1+845+432-9405

IBMLink™ (United States customers only): IBMUSM10(MHVRCFS)
Internet e-mail: mhvrcfs@us.ibm.com
World Wide Web: http://www.ibm.com/servers/eserver/zseries/zos/webqs.html

If you would like a reply, be sure to include your name, address, telephone number, or FAX number.

Make sure to include the following in your comment or note:
v Title and order number of this document
v Page number or topic related to your comment

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1988, 2002. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

http://www.ibm.com/servers/eserver/zseries/zos/webqs.html

Contents

Figures . vii

Tables . ix

About this document . xi
Who should use this document xi
How to use this document . xi
Where to find more information xi

Using LookAt to look up message explanations xi
Accessing z/OS™ licensed documents on the Internet. xii

Information updates on the web xii

Summary of Changes . xiii

Chapter 1. Introduction to Subsystems and the Subsystem Interface (SSI) 1
What is a Subsystem? . 1
What is the SSI?. 1

Unique Attributes of the SSI 1
Types of Subsystem Requests 2
Controlling SSI Processing . 3

Why Write Your Own Subsystem? 3
What is a Dynamic Subsystem? 4

Chapter 2. Making a Request of a Subsystem 7
Set Up the Environment . 7

Subsystem Options Block (SSOB) 7
SSOB Function Dependent Area 8
Subsystem Identification Block (SSIB) 8

Make the Request with the IEFSSREQ Macro 9
Check the Return Code. 10
Summary of Steps . 11

Chapter 3. SSI Function Codes Your Program Can Request 13
SSI Function Code Descriptions 13

Process SYSOUT Data Sets Call — SSI Function Code 1 14
Verify Subsystem Function Call — SSI Function Code 15 40
Request Job ID Call — SSI Function Code 20 44
Return Job ID Call — SSI Function Code 21 51
Request Subsystem Version Information Call — SSI Function Code 54 . . . 55
JES Job Information Services— SSI Function Code 71 71
Notify User Message Service Call — SSI Function Code 75 78
SYSOUT Application Program Interface (SAPI) — SSI Function Code 79 84
Extended Status Function Call — SSI Function Code 80 118

Chapter 4. JES Client/Server Print Interface 147
Creating a CTOKEN . 147
Determining If You Can Request a CTOKEN 147
Comparing CTOKENs . 148
Obtaining Status for a Data Set 148

Accessing a Data Set . 148
Security . 149

Identifying a Requestor on a Header Page 150
Listening for Events. 150

© Copyright IBM Corp. 1988, 2002 iii

||

||

Chapter 5. Setting Up Your Subsystem 153
Function Routines/Function Codes 153

Environment . 153
Recovery and Integrity . 154
Placement of Function Routines 155

Do You Need a Subsystem Address Space? 155
Defining Your Subsystem. 156
Providing a Routine to Initialize Your Subsystem 158

What Your Subsystem Initialization Routine Can Do 158
How to Initialize Your Subsystem 158

Passing Accounting Parameters to Your Subsystem 160
Processing the SUBPARM Option 160
Example . 161

Chapter 6. Services for Building and Using Your Subsystem 163
Adding Your Subsystem . 163

Using the IEFSSNxx Parmlib Member 163
Using the IEFSSI macro . 164
Using the SETSSI command 164

Initializing Your Subsystem . 164
Coding the Initialization Routine 165

Defining What Your Subsystem Can Do 166
Building the SSVT . 166

Changing What Your Subsystem Can Do 167
Enabling Your Subsystem for New Functions 168
Disabling Previously Supported Functions 168
Associating a New Function Routine with a Supported Function Code . . . 169

Activating Your Subsystem . 169
Using the IEFSSVT macro 169
Using the IEFSSI macro . 169

Deactivating Your Subsystem 170
Swapping Subsystem Functions 171
Storing and Retrieving Subsystem-specific Information 172

Storing Subsystem-specific Information 172
Retrieving Subsystem-specific Information 172

Defining Subsystem Options 172
Responding to the SETSSI Command 173
Starting Your Subsystem Under the Primary Subsystem 173

Querying Subsystem Information 173
Using the Subsystem Query Request of the IEFSSI Macro 174
Using the Display SSI Command. 174

Maintaining Information About the Callers of Your Subsystem 175
SSAFF: Set/Obtain Subsystem Affinity 176

Chapter 7. SSI Function Codes Your Subsystem Can Support 179
SSI Function Code Descriptions 179

End-of-Task Call — SSI Function Code 4. 180
End-of-Address Space (End-of-Memory) Call — SSI Function Code 8 . . . 184
WTO/WTOR Call — SSI Function Code 9 188
Command Processing Call — SSI Function Code 10 201
Delete Operator Message — SSI Function Code 14 208
Early Notification of End-of-Task Call — SSI Function Code 50. 211
Request Subsystem Version Information Call — SSI Function Code 54 215
SMF SUBPARM Option Change Call — SSI Function Code 58. 221
Tape Device Selection Call — SSI Function Code 78 225

iv z/OS V1R4.0 MVS Using the Subsystem Interface

Chapter 8. Troubleshooting Errors in Your Subsystem 239
Handling Initialization Errors 239
Handling Function Request Errors 240

Capturing the System Dump 240
Identifying the Type of Error. 241
Determining the Cause of the Error 242

Appendix A. Examples — Subsystem Interface Routines 245
Example 1 — Subsystem Initialization Routine (TSYSINIT) 245
Example 2 — Subsystem Function Routine (WRITEIT). 250
Example 3 — Subsystem Function Routine (DELETEIT) 252
Example 4 — Subsystem Function Routine (LISTEN) 253
Example 5 — Subsystem Requesting Routine (TSYSCALL) 255

Appendix B. Using IEFJSVEC with Your Subsystem 259
Defining What Your Subsystem Can Do 259

Building the SSVT . 259
Changing What Your Subsystem Can Do 263

Enabling Your Subsystem for New Functions 263
Disabling Previously Supported Functions 269

Appendix C. Accessibility . 273
Using assistive technologies 273
Keyboard navigation of the user interface. 273

Notices . 275
Programming Interface Information 276
Trademarks. 277

Index . 279

Contents v

vi z/OS V1R4.0 MVS Using the Subsystem Interface

Figures

1. Processing for a Directed Request . 2
2. Processing for a Broadcast Request . 3
3. Making a Subsystem Request . 10
4. Environment at Time of Call for SSI Function Code 1 16
5. Environment at Time of Call for SSI Function Code 15 41
6. Environment at Time of Call for SSI Function Code 20 46
7. Environment at Time of Call for SSI Function Code 21 52
8. Environment at Time of Call for SSI Function Code 54 57
9. Environment at Time of Call for SSI Function Code 75 79

10. Protocol for the SAPI PUT/GET Call. 88
11. Control Blocks of DYNALLOC Call for SAPI-Provided Data Set 92
12. Protocol for the SAPI COUNT Call . 93
13. Protocol for the SAPI BULK MODIFY Call . 95
14. Environment at Time of Call for SSI Function Code 79 98
15. Environment at Time of Call for SSI Function Code 80 120
16. Initializing Your Subsystem. 159
17. Input to the Initialization Routine. 165
18. Subsystem Affinity Service . 175
19. Environment on Entry to the Function Routine for SSI Function Code 4 182
20. Environment on Entry to the Function Routine for SSI Function Code 8 186
21. Environment for a Single-line WTO in the SSWT Control Block 192
22. Environment for a Multi-line WTO in the SSWT Control Block 195
23. Environment for Minor Lines of a Multi-line WTO in the SSWT Control Block 197
24. Environment for a WTOR in the SSWT Control Block 198
25. Environment on Entry to the Function Routine for SSI Function Code 10 203
26. Environment on Entry to the Function Routine for SSI Function Code 50 213
27. Environment on Entry to the Function Routine for SSI Function Code 54 216
28. Environment at Time of Call for SSI Function Code 58 222
29. Environment at Time of Call for SSI Function Code 78 229
30. Continuation of Environment at Time of Call for SSI Function Code 78 230

© Copyright IBM Corp. 1988, 2002 vii

viii z/OS V1R4.0 MVS Using the Subsystem Interface

Tables

1. IBM-Defined Keywords . 63
2. JES3 Unsupported Flags and Fields . 141
3. Relationship between System and User Criteria 226

© Copyright IBM Corp. 1988, 2002 ix

||

x z/OS V1R4.0 MVS Using the Subsystem Interface

About this document

This document introduces you to subsystems, what they are and why you might
want to write your own. It describes how to set up your subsystem and how to use
it. MVS provides some services to help you build and use subsystems; these
services are described in this document.

In addition, this document describes services provided by IBM subsystems that a
program can use. The program need not be a subsystem to use these services.

Who should use this document
This document is for system programmers or application developers who are
writing a subsystem or requesting system services available through the subsystem
interface (SSI).

This document assumes that the reader has extensive experience with MVS, is
familiar with its basic concepts, can code JCL statements to execute programs or
cataloged procedures, can code in assembler language, and can read assembler,
loader, and linkage editor output.

How to use this document
Depending upon the tasks you want to perform, the following is a guide to the
chapters you can refer to.

For general information about the SSI, see Chapter 1, “Introduction to Subsystems
and the Subsystem Interface (SSI)” on page 1.

If you are familiar with the SSI, and you are writing a program that uses services
provided by IBM subsystems, see:
v Chapter 2, “Making a Request of a Subsystem” on page 7
v Chapter 3, “SSI Function Codes Your Program Can Request” on page 13.

If you are familiar with the SSI, and you are writing your own subsystem, see:
v Chapter 5, “Setting Up Your Subsystem” on page 153
v Chapter 6, “Services for Building and Using Your Subsystem” on page 163
v Chapter 7, “SSI Function Codes Your Subsystem Can Support” on page 179
v Chapter 8, “Troubleshooting Errors in Your Subsystem” on page 239.

Where to find more information
Where necessary, this document references information in other documents, using
shortened versions of the document title. For complete titles and order numbers of
the documents for all products that are part of z/OS, see z/OS Information
Roadmap.

Using LookAt to look up message explanations
LookAt is an online facility that allows you to look up explanations for most
messages you encounter, as well as for some system abends and codes. Using
LookAt to find information is faster than a conventional search because in most
cases LookAt goes directly to the message explanation.

You can access LookAt from the Internet at:

© Copyright IBM Corp. 1988, 2002 xi

http://www.ibm.com/eserver/zseries/zos/bkserv/lookat/

or from anywhere in z/OS where you can access a TSO/E command line (for
example, TSO/E prompt, ISPF, z/OS UNIX System Services running OMVS). You
can also download code from the z/OS Collection (SK3T-4269) and the LookAt Web
site that will allow you to access LookAt from a handheld computer (Palm Pilot VIIx
suggested).

To use LookAt as a TSO/E command, you must have LookAt installed on your host
system. You can obtain the LookAt code for TSO/E from a disk on your z/OS
Collection (SK3T-4269) or from the News section on the LookAt Web site.

Some messages have information in more than one document. For those
messages, LookAt displays a list of documents in which the message appears.

Accessing z/OS ™ licensed documents on the Internet
z/OS licensed documentation is available on the Internet in PDF format at the IBM
Resource Link™ Web site at:
http://www.ibm.com/servers/resourcelink

Licensed documents are available only to customers with a z/OS license. Access to
these documents requires an IBM Resource Link user ID and password, and a key
code. With your z/OS order you received a Memo to Licensees, (GI10-0671), that
includes this key code. 1

To obtain your IBM Resource Link user ID and password, log on to:
http://www.ibm.com/servers/resourcelink

To register for access to the z/OS licensed documents:

1. Sign in to Resource Link using your Resource Link user ID and password.

2. Select User Profiles located on the left-hand navigation bar.

Note: You cannot access the z/OS licensed documents unless you have registered
for access to them and received an e-mail confirmation informing you that
your request has been processed.

Printed licensed documents are not available from IBM.

You can use the PDF format on either z/OS Licensed Product Library CD-ROM or
IBM Resource Link to print licensed documents.

Information updates on the web
For the latest information updates that have been provided in PTF cover letters and
Documentation APARs for z/OS and z/OS.e, see the online document at:
http://www.s390.ibm.com:80/bookmgr-cgi/bookmgr.cmd/BOOKS/ZIDOCMST/CCONTENTS

This document is updated weekly and lists documentation changes before they are
incorporated into z/OS publications.

1. z/OS.e™ customers received a Memo to Licensees, (GI10-0684) that includes this key code.

xii z/OS V1R4.0 MVS Using the Subsystem Interface

|

|
|

|

|
|

http://www.ibm.com/servers/eserver/zseries/zos/bkserv/lookat/lookat.html
http://www.ibm.com/servers/resourcelink
http://www.ibm.com/servers/resourcelink
http://www.s390.ibm.com:80/bookmgr-cgi/bookmgr.cmd/BOOKS/ZIDOCMST/CCONTENTS

Summary of Changes

Summary of Changes
for SA22-7642-01
z/OS Version 1 Release 4

The document contains information also presented in z/OS MVS Using the
Subsystem Interface, SA22-7642-00, which supports z/OS Version 1 Release 1.

New information

v Information is added to indicate this document supports z/OS.e.

v JES Job Information Services (function code 71) has been added.

This document contains terminology, maintenance, and editorial changes. Technical
changes or additions to the text and illustrations are indicated by a vertical line to
the left of the change.

Starting with z/OS V1R2, you may notice changes in the style and structure of
some content in this document—for example, headings that use uppercase for the
first letter of initial words only, and procedures that have a different look and format.
The changes are ongoing improvements to the consistency and retrievability of
information in our documents.

Summary of Changes
for SA22-7642-00
z/OS Version 1 Release 1

The document contains information also presented in MVS/ESA Using the
Subsystem Interface.

© Copyright IBM Corp. 1988, 2002 xiii

xiv z/OS V1R4.0 MVS Using the Subsystem Interface

Chapter 1. Introduction to Subsystems and the Subsystem
Interface (SSI)

This chapter describes basic concepts that you need to understand if you want to
write your own subsystem or want to use services provided by IBM subsystems.

What is a Subsystem?
A subsystem is a service provider that performs one function or many functions, but
does nothing until it is requested. Although the term “subsystem” is used in other
ways, in this book a subsystem must be the master subsystem or be defined to
MVS in one of the following ways:

v Processing the IEFSSNxx parmlib member during IPL

You can use either the keyword format or positional format of the IEFSSNxx
parmlib member. IBM recommends that you use the keyword format, which
allows you to define and dynamically manage your subsystems.

v Issuing the IEFSSI macro

v Issuing the SETSSI system command

(Note that the master subsystem (MSTR) is a part of MVS and is not defined in any
of these ways.) Some examples of IBM-supplied subsystems that use the SSI:
v JES2
v JES3
v IMS
v NetView
v OPC

There are two types of subsystems:

v The primary subsystem. The job entry subsystem that MVS uses to do work. It
can be either JES2 or JES3.

v Secondary subsystems. Secondary subsystems provide functions as needed by
IBM products, vendor products, or the installation.

MVS communicates with subsystems through the SSI.

What is the SSI?
The SSI is the interface used by routines (IBM, vendor, or installation-written) to
request services of, or to pass information to, subsystems. An installation can
design its own subsystem and use the SSI to monitor subsystem requests. An
installation can also use the SSI to request services from IBM-supplied subsystems.
The SSI acts only as a mechanism for transferring control and data between a
requestor and the subsystem; it does not perform any subsystem functions itself.

Unique Attributes of the SSI
The SSI is a way for one routine to call another routine. There are a number of
other ways that a routine can call another routine, such as:
v Branch and link register (BALR) 14,15
v LINK or LINKX macro
v Program call (PC)
v SVC

© Copyright IBM Corp. 1988, 2002 1

The SSI is different from these linkage interfaces, however, in that:

v The called routine does not have to be there. That is, when a routine calls the
subsystem, the SSI checks to see if the subsystem either is not interested in the
request or does not exist. The caller then receives an appropriate return code.

v A caller’s request can be routed to multiple subsystem routines.

Types of Subsystem Requests
The SSI handles two types of requests: directed requests and broadcast requests.

Directed requests, which can be defined by the installation, are made to one named
subsystem. For a directed request, the caller informs the named subsystem of an
event, or asks the named subsystem for information. For example, you can access
JES SYSOUT data sets with a directed request.

Figure 1 shows the processing for a directed request.

See Chapter 3, “SSI Function Codes Your Program Can Request” on page 13 for
more information on the services available to your program using directed requests.

Broadcast requests, which are defined by MVS, provide the ability for subsystems
to be informed when certain events occur in the system. Broadcast requests, differ
from directed requests, in that the system allows multiple subsystems to be
informed when an event occurs. The SSI gives control to each subsystem that is
active and that has expressed an interest in being informed of the event. For
example, your subsystem can be informed when a WTOR message is issued in
order to automate a response to the WTOR.

Figure 2 on page 3 shows the processing for a broadcast request.

See Chapter 7, “SSI Function Codes Your Subsystem Can Support” on page 179 for
more information on the broadcast function codes your subsystem can support.

Issuer SSI Subsystem A

Directed Request

Subsystem C

Subsystem W

Figure 1. Processing for a Directed Request

Introduction

2 z/OS V1R4.0 MVS Using the Subsystem Interface

Controlling SSI Processing
The IEFJFRQ installation exit provides a way to examine and modify subsystem
function requests. See z/OS MVS Installation Exits for more information on the
capabilities and use of the IEFJFRQ exit.

Why Write Your Own Subsystem?
You can extend the function of the operating system by writing and invoking your
own subsystem.

Using a subsystem for an installation-defined function not provided by MVS requires
an in-depth knowledge of procedures, problems, and goals at your installation; as
well as a knowledge of MVS. You must take many things into consideration when
deciding whether a subsystem is needed. Some factors to consider include:

v You might have many programs that need the same functions. If you use a
subsystem to supply these functions, the request is made in terms of the function
needed.

v You might want to take installation-specific action in response to certain events. If
these events cause a broadcast SSI call, you can set up a subsystem to receive
control at that time. However, if you choose to make a subsystem eligible for a
broadcast request, your subsystem gets control on every request for that
function. Thus, you must weigh the benefits of having the subsystem handle that
function against the possible impact on performance.

v The requesting program can be isolated from problems involving the subsystem.

v Using subsystems to provide services allows more flexibility and compatibility.
Not every change in the subsystem will require you to recompile; the interface
between the requesting program and the subsystem remains the same.

v You might want to use a subsystem to set up installation requirements only at
initialization time. During system initialization, control passes to the subsystem
initialization routines named in parmlib member IEFSSNxx. The initialization
routine establishes changes defined by the installation. In this case, the

Issuer
(Operating System

only)
SSI Subsystem A

Broadcast Request

Subsystem C

Subsystem W

Figure 2. Processing for a Broadcast Request

Introduction

Chapter 1. Introduction to Subsystems and the Subsystem Interface (SSI) 3

initialization routine performs the function at initialization and does not set up
separate function routines; the subsystem-provided programs that process the
function identified by the function codes.

You must decide whether you want to use this function of subsystems for this
purpose. Consider that some of the control blocks built reside below 16
megabytes in common storage and, if your subsystem should fail, you may not
be able to complete initialization of your system.

Do not use a subsystem to do the following:

v To anchor persistent control blocks. Use the Name/Token callable services
instead. Subsystems that exist only to provide an anchor degrade the
performance of SSI request processing. See z/OS MVS Programming:
Authorized Assembler Services Guide for more information on the Name/Token
callable services.

v To receive control for end-of-task and end-of-memory conditions. Use the
RESMGR macro instead. Subsystems that exist only as resource managers
degrade the performance of SSI request processing. See z/OS MVS
Programming: Authorized Assembler Services Guide for more information on the
RESMGR macro.

If you decide that you need a subsystem, see Chapter 5, “Setting Up Your
Subsystem” on page 153 for the information necessary to accomplish that task.

What is a Dynamic Subsystem?
Dynamic subsystems are those subsystems that can be defined in one of the
following ways:
v Processing the keyword format IEFSSNxx parmlib member during IPL
v Issuing the IEFSSI macro
v Issuing the SETSSI system command.

Subsystems have the choice of being dynamic. Subsystems that are not dynamic
can be defined only at IPL using the positional form of the IEFSSNxx parmlib
member, in which case, they cannot use dynamic SSI services.

In addition to its role in communicating with subsystems, the SSI provides a set of
authorized system services that are available only to dynamic subsystems that
installations, applications and subsystems can invoke to:
v Define (add) a new subsystem dynamically (without requiring an IPL)
v Activate a subsystem that is already defined
v Deactivate a subsystem that is already defined
v Store and retrieve subsystem-dependent information
v Define subsystem options, which include deciding:

– If a subsystem can respond to the SSI commands
– Which subsystem a subsystem should start under.

v Query subsystem information
v Define and modify the response of a subsystem to function requests.

Defining or adding a subsystem is primarily a way of making the subsystem’s
unique name known to the system. A subsystem is active when it is ready to
process requests that the SSI directs to it. To deactivate a subsystem, the
subsystem informs the SSI that it is no longer accepting requests. For example, a
subsystem may request that it be deactivated to update the list of function requests
that it supports, or to respond to a problem.

Introduction

4 z/OS V1R4.0 MVS Using the Subsystem Interface

The dynamic SSI services reject any requests to manipulate subsystems that were
not defined dynamically.

The services that allow installations, applications and subsystems to define and
modify the response of a subsystem to function requests replace and enhance the
existing IEFJSVEC service. You can still use the existing IEFJSVEC service, which
is described in Appendix B, “Using IEFJSVEC with Your Subsystem” on page 259,
however IBM recommends that you use the services described in Chapter 6,
“Services for Building and Using Your Subsystem” on page 163 instead of
IEFJSVEC. These services provide an easier way to define or change the functional
response of a subsystem.

Introduction

Chapter 1. Introduction to Subsystems and the Subsystem Interface (SSI) 5

6 z/OS V1R4.0 MVS Using the Subsystem Interface

Chapter 2. Making a Request of a Subsystem

This chapter describes how to use the SSI to make a request of a subsystem. The
subsystem may either be an installation-defined subsystem, a vendor-supplied
subsystem, or a subsystem provided by IBM. See Chapter 3, “SSI Function Codes
Your Program Can Request” on page 13 for the list of the functions that can be
requested of IBM subsystems.

To request a function of a subsystem, do the following:

1. Set up the environment needed to make the request.

2. Make the request with the IEFSSREQ macro.

3. Check the information returned from both the SSI and the subsystem and take
the appropriate action.

Set Up the Environment
With exceptions, your requesting program must be in the same state (problem or
supervisor) as the subsystem. For IBM-supplied functions, see the specific function
code descriptions in Chapter 3, “SSI Function Codes Your Program Can Request”
on page 13 for information on the environmental requirements that must be met.
The SSI supports address mode (AMODE) switching. Your program must include
mapping macros for the CVT and the JESCT control blocks.

NOT Programming Interface Information

Note that the IEFSSREQ macro uses the JESSSREQ field in the JESCT control
block to locate the SSI routing routine.

End of NOT Programming Interface Information

You must tell the SSI the function you are requesting and the subsystem with which
you want to communicate. You make a request by obtaining storage for the
following control blocks:
v SSOB
v SSOB function dependent area (if required)
v SSIB.

These control blocks, and your program’s save area, must reside in an area
addressable by the called subsystem’s function routine.

Subsystem Options Block (SSOB)
The subsystem options block (SSOB) identifies the function that you are requesting.
The SSOB consists of a 28-byte header that you must fill in for every call to a
subsystem through the SSI. The SSOB is the parameter list for the IEFSSREQ
macro.

Function codes are the way a caller identifies the service or processing requested
of a subsystem. You specify a function code by placing the appropriate code in the
SSOBFUNC field. Another important field is SSOBRTRY. In the case of an abend,
this flag determines whether the directed function recovery routine will percolate or
retry. IBM recommends that you set this flag. Setting this flag will cause the SSI to
attempt to resume processing if it fails. If the flag is not set, the SSI will percolate
by default.

© Copyright IBM Corp. 1988, 2002 7

Use the IEFSSOBH mapping macro to build the SSOB header.

SSOB Function Dependent Area
In addition to the SSOB, the specific function you invoke might require additional
information, which can be passed in a function dependent area identified in the
SSOB. You specify which SSOB function dependent area that you want to use by
setting the SSOBINDV field in the SSOB to the address of the SSOB function
dependent area.

The mapping macro used to map the SSOB function dependent area varies based
on the specific function you invoke.

Subsystem Identification Block (SSIB)
The subsystem identification block (SSIB) identifies the particular subsystem to
which a request is being directed. Your program can provide an SSIB or can use an
SSIB provided by the system.

A life-of-job SSIB is an SSIB that is automatically provided by the system. The
subsystem name specified in the life-of-job SSIB is the name of the subsystem that
initiated the currently running job, started task, or TSO/E user. This is usually the
primary JES, but could be:
v An alternate JES2
v The master subsystem

If your program does not create an SSIB, it must set the address of the SSIB in the
SSOB (SSOBSSIB) to zero. This setting tells the system to use the life-of-job SSIB.

Before you make an SSI request you need to evaluate whether the subsystem
name provided by the system in the life-of-job SSIB is the correct subsystem for the
function you are requesting. The system provides the subsystem name in the
life-of-job SSIB, based on whether the unit of work is a batch job (including a
WLM-initiated job), a started task, or a time-sharing LOGON as follows:

v Batch jobs

A batch job is initiated under the JES that selects the job, that is, either the
primary or alternate JES. In a JES initiator, the initiator’s life-of-job SSIB contains
the JES subsystem name. In a WLM initiator, the initiator’s life-of-job SSIB
contains the master subsystem name. The SMF exits IEFACTRT, IEFUJI,
IEFUSI, and IEFUTL receive control in the initiator’s environment with the
initiator’s life-of-job SSIB active. If your SMF exit makes an SSI request that
depends on JES, it will not be successful in a WLM initiator.

v Started tasks

If a START command with the SUB= parameter is specified, the started task is
initiated under the subsystem name specified on the SUB= parameter. This is
also the subsystem name in the life-of-job SSIB.

If you specify SUB=MSTR, the master subsystem starts the job even if it is not a
subsystem. To do this, however you must meet the requirements of the master
subsystem. See z/OS MVS JCL Reference for considerations when running a
started task under the master subsystem.

If a START command (without the SUB= parameter) is specified, and is for a
started task with the same name as a subsystem that is capable of being a job
entry subsystem (JES), the started task is initiated under the master subsystem.
The subsystem name in the life-of-job SSIB is MSTR.

Making a Request

8 z/OS V1R4.0 MVS Using the Subsystem Interface

If a START command (without the SUB= parameter) is specified and is for a
started task with the same name as a subsystem that is not capable of being a
job entry subsystem (JES), the started task is initiated under the primary JES
subsystem. The subsystem name in the life-of-job SSIB is the primary JES
subsystem name.

If a START command (without the SUB= parameter) is specified and is for a
started task with a name that is not the name of a subsystem, the started task is
initiated under the primary JES subsystem. The subsystem name in the life-of-job
SSIB is the primary JES subsystem name.

v TSO/E users

For TSO/E users, the LOGON is initiated under the primary JES. The subsystem
name in the life-of-job SSIB is the primary subsystem name.

If the subsystem name provided in the life-of-job SSIB is not the correct subsystem
name based on the function you want to invoke, your program must provide an
SSIB. See Chapter 3, “SSI Function Codes Your Program Can Request” on page 13
for the subsystem name that must be specified when making requests for functions
provided by IBM subsystems.

To create an SSIB, your program can use the following procedure:

1. Map the format of the SSIB with the IEFJSSIB mapping macro.

2. Clear the fields in the SSIB to binary zeros.

3. Set the SSIBID and SSIBLEN fields to the appropriate values.

4. Set the SSIBSSNM field to the name of the subsystem. (If the subsystem name
is less than 4 characters, specify it left-justified and padded to the right with
blanks.)

5. Set the SSIBJBID field if required.

6. Set the SSIBSUSE field if required.

Note: The SSI request (defined by IBM, a vendor, or the installation) may
require your program to set the SSIBSUSE field. That field is available
for the subsystem to use for an SSIB that a program provides in
response to the SSI request. A subsystem (whether defined by a vendor
or the installation) must not use the SSIBSUSE field in the life-of-job
SSIB.

7. Store the address of the SSIB in the SSOBSSIB field of the SSOB.

Make the Request with the IEFSSREQ Macro
When you have set up the environment and built the necessary control blocks, you
are ready to issue the IEFSSREQ macro to make the request. There are no
parameters on the IEFSSREQ macro; the SSOB, SSOB function dependent area (if
provided), and SSIB provide the information the SSI and the subsystem need to
perform their function.

Input Register Information

Before issuing the IEFSSREQ macro, the caller must ensure that the following
registers contain the specified information:

Register Contents

1 Address of a one-word parameter list that has the high-order bit on
and a pointer to the SSOB control block in the low-order 31 bits.

Making a Request

Chapter 2. Making a Request of a Subsystem 9

13 Address of a standard 18-word save area.

Syntax of IEFSSREQ

The syntax of the IEFSSREQ macro is:

[symbol] IEFSSREQ

where symbol is any valid assembler language symbol. Note that one or more
blanks are required before and after IEFSSREQ.

Figure 3 shows the environment when you make a subsystem request.

Check the Return Code
For a directed subsystem request, the SSI returns one of the following decimal
return codes in register 15:

Return Code
(Decimal) Meaning
SSRTOK (0) Successful completion — the request went to the

subsystem.

Register 1

'1'b SSOB

SSOB

'SSOB' (SSOBID)

Length
(SSOBLEN)

Function ID
(SSOBFUNC)

SSIB

'SSIB' (SSIBID)

Length (SSIBLEN)

Subsystem name (SSIBSSNM)

Length

Function Dependent Area

Variable -
depends on
type of
function

SSIB (SSOBSSIB) or zero

Function Dependent Area
(SSOBINDV)

Figure 3. Making a Subsystem Request

Making a Request

10 z/OS V1R4.0 MVS Using the Subsystem Interface

SSRTNSUP (4) The subsystem does not support this function.
SSRTNTUP (8) The subsystem exists, but is not active.
SSRTNOSS (12) The subsystem is not defined to MVS.
SSRTDIST (16) The pointer to the SSOB control block or the SSIB

control block is not valid, or the function code
specified in the SSOBFUNC field is greater than the
maximum number of functions supported by the
subsystem specified in the SSIBSSNM field.

SSRTLERR (20) The SSOB or SSIB have invalid lengths or formats
SSRTNSSI (24) The SSI has not been initialized.

If the return code in register 15 is zero, the SSI was able to pass the request to the
subsystem, and the SSOB function dependent area might contain information
returned by the subsystem. The contents of the return code in the SSOB
(SSOBRETN), and other fields, depend on which function you requested.

Summary of Steps
When issuing the IEFSSREQ macro you can follow these steps:

1. Set up the environment:

v Obtain storage for control blocks

v Set up register 1 and 13 (Note that the save area must be accessible to the
function routine.)

v Initialize the SSOB

v Initialize the SSOB function dependent area (if required)

v Initialize the SSIB (if necessary)

v Enter supervisor state (if necessary)

2. Make the request:

v Invoke IEFSSREQ

v Return to problem state (if necessary)

3. Check the return codes:

v Check the SSI return code in register 15 and the subsystem return code in
SSOBRETN, and take appropriate action.

v Free the storage.

Example 5 in Appendix A, “Examples — Subsystem Interface Routines” shows a
coding example of a routine making a request of a subsystem.

Making a Request

Chapter 2. Making a Request of a Subsystem 11

12 z/OS V1R4.0 MVS Using the Subsystem Interface

Chapter 3. SSI Function Codes Your Program Can Request

This chapter contains detailed information on directed function codes your program
can request. IBM subsystems provide these function codes.* The following is a list
of SSI function codes, along with their purpose, the subsystems that support the
function and the type of subsystem request.

Function
Code

Requested Function Subsystem* Type of Request

1 Process SYSOUT data
sets

JES2/JES3 Directed

15 Verify subsystem function Master Directed
20 Request job ID JES2/JES3 Directed
21 Return job ID JES2/JES3 Directed
54 Request subsystem

version information
JES2/JES3/Master Directed

71 JES JOB information JES2 Directed
75 Notify user message

service
JES2/JES3 Directed

79 SYSOUT Application
Program Interface (SAPI)

JES2/JES3 Directed

80 Extended Status Function
Call

JES2/JES3 Directed

*Not all supported levels of the IBM subsystems support all the function codes
available with the current release of OS/390. JES2 users should refer to z/OS JES2
Migration and JES3 users should refer to z/OS JES3 Migration for specific
information about which levels of their subsystem support these function codes.

Your program need not be a subsystem to use these function codes. In addition to
the SSI function codes provided by the operating system, installations can also
define and use their own function codes, using the range 236 to 255. You can
design your own directed requests for these function codes.

SSI Function Code Descriptions
Your program can use several SSI function codes when coding for an
MVS/ESA-JES2/JES3 environment. This section contains detailed descriptions of
the SSI function codes listed at the beginning of this chapter.

See example 5 in Appendix A, “Examples — Subsystem Interface Routines” for a
coding example of a routine making a request of a subsystem.

© Copyright IBM Corp. 1988, 2002 13

|

Process SYSOUT Data Sets Call — SSI Function Code 1
The Process SYSOUT Data Sets call (SSI function code 1) allows a user-supplied
program to access JES SYSOUT data sets independently from the normal functions
(such as print, network) JES provides, so that the characteristics of the SYSOUT
data sets can be either retrieved or updated. The program using this interface is
called an external writer. It operates in an address space external to JES, generally
for requesting and printing JES-managed SYSOUT data sets that reside on spool.

Retrieval Attributes: For both JES2 and JES3, the program can select SYSOUT
data sets for retrieval purposes according to a variety of different selection
attributes, such as the form name or SYSOUT class. Both JES2 and JES3 can
either keep or delete the retrieved data set.

Update Attributes: For JES3 only, the program can select SYSOUT data sets for
update purposes according to a variety of different selection attributes, such as the
destination or SYSOUT class. The program can even delete data sets from the JES
spool.

Type of Request
Directed SSI call.

Use Information
The caller of the SSI function code 1 is the external writer. See “External Writer
Considerations” on page 30 for detailed information on the definition of a standard
external writer. See also z/OS JES2 Initialization and Tuning Guide and z/OS JES3
Initialization and Tuning Guide for more information on the external writer.

The external writer uses SSI function code 1 to retrieve (JES2 and JES3) and
update (JES3 only) JES-managed SYSOUT data sets, allowing the writer to
perform processing that JES does not provide.

For example, while JES provides the ability to print locally on a variety of printers,
JES does not provide direct support for all forms of devices, such as microfiche
printers. SSI function code 1 allows other programs to select SYSOUT from JES,
and thus process it with their own devices.

Additionally, the function exists for these programs to perform disposition processing
on the SYSOUT data set according to program control. For example, after reading
the SYSOUT data set to a microfiche printer, the program may tell JES to do one of
the following:
v Delete the data set
v Hold the data set for additional processing
v Reroute the data set to a different local or remote destination.

Before using the process SYSOUT data sets call, investigate using the functional
system interface (FSI) as an alternative. The FSI also provides facilities for
selection of SYSOUT work destined to an outside address space. See z/OS MVS
Using the Functional Subsystem Interface for more information on the FSI.

Issued to
JES2 or JES3.

Related SSI Codes
None.

Related Concepts
You should know how to use:

SSI Function Code 1

14 z/OS V1R4.0 MVS Using the Subsystem Interface

v Dynamic allocation (DYNALLOC) services to allocate/deallocate the JES-supplied
data set.

v Sequential access method (SAM) to read the allocated SYSOUT data set and
properly handle the process SYSOUT interface.

v Other standard MVS services, such as WAIT and POST logic.

Environment
Your external writer must include the following mapping macros:
v CVT
v IEFJESCT

Data areas commonly referenced are mapped by the following mapping macros.
IBM recommends you include them in your program:
v IEFSSOBH
v IEFJSSIB
v IEFSSSO (with SOEXT=YES specified)

Note: Specifying SOEXT=YES generates the ’long’ form of the IEFSSSO with
the PSO extension.

Your external writer must meet the following requirements:

Minimum Authorization Supervisor state
Dispatchable unit mode Task
AMODE 24-bit or 31-bit
Cross memory mode PASN=HASN=SASN
ASC mode Primary
Interrupt status Enabled for I/O and external interrupts
Locks No locks held
Control Parameters The SSOB and SSSO control blocks can reside in storage

above 16 megabytes.
Recovery The external writer should provide an ESTAE-type recovery

environment. See z/OS MVS Programming: Authorized
Assembler Services Guide for more information on an
ESTAE-type recovery environment.

Figure 4 on page 16 shows the environment at the time of the call for SSI function
code 1.

SSI Function Code 1

Chapter 3. SSI Function Codes Your Program Can Request 15

Input Register Information
Before issuing the IEFSSREQ macro, your external writer must ensure that the
following general purpose registers contain:

Register Contents

1 Address of a 1-word parameter list that has the high-order bit on
and a pointer to the SSOB control block in the low-order 31 bits.

13 Address of a standard 18-word save area.

Input Parameters
Input parameters for the function routine are:
v SSOB
v SSIB
v SSSO

SSOB Contents: Your external writer sets the following fields in the SSOB control
block on input:

Field Name Description

SSOBID Identifier ’SSOB’

SSOBLEN Length of the SSOB (SSOBHSIZ) control block

SSOBFUNC SSI function code 1 (SSOBSOUT)

Function Dependent Area
(SSOBINDV)

'SSOB' (SSOBID)

Length
(SSOBLEN)

Function ID
(SSOBFUNC)

SSIB (SSOBSSIB) or Zero

SSIB

'SSIB' (SSIBID)

Length (SSIBLEN)

SSSO

Register 1

SSOB

'1'b SSOB

Subsystem Name (SSIBSSNM)

Caller-supplied Security Token
Receiving Area

Length (SSSOLEN)
Selection
Flags
(SSSOUFLG)

Version
(SSSOVER)

Data set
Selection
Flags
(SSSOFLG1)

Current
Data set
disposition
(SSSOFLG2)

Flag Byte
(SSSOFLGA)

Flags
(SSSOFLG5)

Security Token Receiving Field
(SSSOSECT)

Job Identifier (SSIBJBID)

Subsystem Use (SSIBSUSE)

Figure 4. Environment at Time of Call for SSI Function Code 1

SSI Function Code 1

16 z/OS V1R4.0 MVS Using the Subsystem Interface

SSOBSSIB Address of an SSIB control block or zero (if this field is zero, the
life-of-job SSIB is used.) See “Subsystem Identification Block
(SSIB)” on page 8 for more information on the life-of-job SSIB.

SSOBINDV Address of the function dependent area (SSSO control block)

Your external writer must set all other fields in the SSOB control block to binary
zeros before issuing the IEFSSREQ macro.

SSIB Contents: If you don’t use the life-of-job SSIB, your external writer must
provide an SSIB and set the following fields in the SSIB control block on input:

Field Name Description

SSIBID Identifier ’SSIB’

SSIBLEN Length of the SSIB (SSIBSIZE) control block

SSIBSSNM Subsystem name — name of the subsystem to which this Process
SYSOUT Data Sets call is directed. It is usually the primary JES, or
in the case of JES2, a possible secondary JES.

If your routine has not been initiated from such a JES, your external
writer must issue a Request Job ID call (SSI function code 20) prior
to this Process SYSOUT Data Sets call. You must use the same
subsystem name in this SSIBSSNM field as you used for the
Request Job ID call.

SSIBJBID Job identifier — the job ID that was returned upon completion of the
Request Job ID call (SSI function code 20).

SSIBSUSE (JES3 only) Subsystem use — the SSIBSUSE value that was
returned upon completion of the Request Job ID call (SSI function
code 20).

Your external writer must set all other fields in the SSIB control block to binary
zeros before issuing the IEFSSREQ macro.

SSSO Contents: Your external writer sets the following fields in the SSSO control
block on input:

Field Name Description

SSSOLEN Length of the SSSO control block — set with SSSOSIZE value.

SSSOUFLG User Selection Flags — defines the operation this call performs.

The following options are available:

Flag Value is XX'00':

Setting this flag to zero indicates an initial request. Upon issuing the
IEFSSREQ service for the SSI function code 1, your external writer
should ensure this field is zero.

When the SSSOCTRL bit (in flag byte SSSOFLG2) is zero, JES
provides the name of the next data set to be allocated.

Flag Value is non-zero:

For JES3 only, setting this flag to non-zero indicates that the caller
performs immediate disposition processing on all data sets
matching the other selection criteria (including the data set specified
in the SSSODSN field). If your external writer has dynamically

SSI Function Code 1

Chapter 3. SSI Function Codes Your Program Can Request 17

allocated a single data set, however, the updates described through
the bit settings listed below should be performed through the
appropriate dynamic text unit keys only. See “Processing Flow for
Single Data Set Requests” on page 28 for more information on
performing disposition processing on single data sets.

Your external writer can use one or more of the following bit
settings when performing disposition processing on multiple data
sets only:

v SSSOSETC — (JES3 only) Change the SYSOUT class to the
value specified in the SSSOCLAS field.

This is only valid for JES3 update requests for the selected data
sets on the JES3 HOLD queue.

Bit SSSORLSE might be used concurrently to move the data set
from the HOLD queue to the WRITER queue. Information
associated with this SYSOUT class is also updated with the
JES3 defaults if that SYSOUT class was defined to JES3.

v SSSODELC — (JES3 only) Delete the selected data sets.

This is only valid for JES3 update requests that have data sets
on the WRITER or HOLD queue.

v SSSOROUT — (JES3 only) Change the destination of the
selected data sets to the value specified in the SSSODEST field.

This is only valid for JES3 update requests, and for the selected
data sets on the JES3 HOLD queue.

The SSSORLSE bit might be used concurrently to move the data
set from the HOLD queue to the WRITER queue.

v SSSOHOLD — Hold all selected data sets.

Neither JES2 nor JES3 honors this bit.

v SSSORLSE — (JES3 only) Release all selected data sets that
are eligible for printing or further processing by JES3.

This is only valid for JES3 update requests, and for the selected
data sets on the JES3 HOLD queue.

Bits SSSOSETC and SSSOROUT might also be issued
concurrently.

SSSOVER Version Number — the current version number. Set with the value
of SSSOCVER.

SSSOFLG1 Data set selection flags — determines the data sets the caller
wants.

Your external writer can set one or more of the following selection
bits:

v SSSOHLD — Use HELD data sets in the selection criteria.

For JES2, do not set this bit. Your external writer selects work for
JES2 only if that work is on the OUTPUT queue with an
OUTDISP of WRITE or KEEP.

For JES3, setting this bit allows the external writer to process
work from either:

– JES3 WRITER queue only (if SSSOHLD is off)

– JES3 WRITER and HOLD queues (HOLD=EXTWTR only) if
SSSOHLD is on.

SSI Function Code 1

18 z/OS V1R4.0 MVS Using the Subsystem Interface

To ensure your external writer selects work from only the HOLD
queue, select a specific SYSOUT class assigned to
HOLD=EXTWTR, or the WRITER name (which creates data sets
queued only to the HOLD queue). This way work destined for
JES3 writers on the OUTPUT queue will not be accidentally
allocated or processed.

v SSSOSCLS — Use SYSOUT class in a selection criterion.

Your external writer can set up to eight specific SYSOUT
(1-character EBCDIC values A-Z, 0-9) classes in the SSSOCLSL
field. These classes are:

– Selected in priority order

– Left-justified, and padded to the right with blank (X’40’)
characters in the SSSOCLSL field.

v SSSODST — Use the remote destination in a selection criterion.

Your external writer specifies the destination in the SSSODEST
field.

v SSSOSDST — An alternative way for the external writer to
specify SSSODST, and has the same equated value as
SSSODST.

v SSSOSJBN — Use the job name as a selection criterion.

Your external writer specifies the job name in the SSSOJOBN
field.

v SSSOSJBI — Use the job ID as a selection criterion.

Your external writer specifies the job ID in the SSSOJOBI field.

v SSSOSPGM — Use the external writer name (the second
positional parameter in the SYSOUT= keyword on the DD JCL
statement), or userid as a selection criterion. Either value
(depending on the bit setting for either SSSOWTRN or
SSSOUSER) is stored in the SSSOPGMN field.

v SSSOSFRM — Use the form name as a selection criterion.

Set selection bit SSSOSFRM. When using 8-character forms,
also set selection bit SSSOSFR8.

1. 4-character form name

Use the 4-character form name field (SSSOFORM), and set
the SSSOSFRM bit. Do not set the 8-character selection bit
(SSSOSFR8).

2. 8-character form name

Use the 8-character form name field (SSSOFOR8), and set
both the SSSOSFRM and SSSOSFR8 bits. If using an
8-character form, place the name of the form in the
SSSOFOR8 field, and not in the SSSOFORM field.

v SSSOSFR8 — Use the 8-character form name field
(SSSOFOR8) as a selection criterion. Make sure that you do not
use the 4-character form name field (SSSOFORM). JES ignores
the SSSOFORM field.

If your external writer sets the this bit, the SSSOSFRM bit must
also be set to indicate selection by either 4-character or
8-character forms.

SSSOFLG2 Flag byte

SSI Function Code 1

Chapter 3. SSI Function Codes Your Program Can Request 19

Your external writer can set one or more of the following selection
bits:

v SSSOCTRL — Processing Completion Flag

If your external writer sets this bit off, it performs a retrieval
request. The next data set name (if selectable by JES) to be
processed is returned in the SSSODSN field.

If your external writer sets this bit on, it has made the last call to
JES. Your external writer should only set the SSSOCTRL bit on
when ending its address space, so that performance will not be
negatively affected by the disassociating of resources (collected
by your external writer) in the JES address space. This can
include such resources as storage, and queues of control blocks.

For JES3, your external writer can issue this final IEFSSREQ call
only when the SSSOCTRL bit is set on, and when the external
writer is ending.

v SSSOPSEE — Process SYSOUT extension

Your external writer sets this bit on if SOEXT=YES was specified
on the IEFSSSO macro invocation to indicate that additional
fields exist in the IEFSSSO.

For example, the DDNAME version (proc step name, step name,
dd name) of the returned data set is in a field in the process
SYSOUT extension.

SSSOJOBN Job name for a retrieval request.

Your external writer:

v Sets the value of the specific job name in the SSSOJOBN field
left-justified, and padded to the right with blank (X’40’)
characters.

v Sets the SSSOSJBN bit for this selection to occur.

SSSOJOBI Job ID for a retrieval request.

Your external writer:

v Sets the value of the specific job ID in the SSSOJOBI field
left-justified, and padded to the right with blank (X’40’)
characters. Examples of valid job IDs are:
– ’JOB12345’
– ’STC12345’ or ’TSU01234’ (in JES2).

v Sets the SSSOSJBI bit for this selection to occur.

SSSOCLAS (JES3 only) Single character SYSOUT class that the output data
sets must be changed to during an update request.

Your external writer sets the SSSOSETC bit for modification to
occur.

SSSOFLGA Flag byte containing the SSSOUSER and SSSOWTRN bits.

Your external writer can set either the SSSOUSER bit (userid), or
the SSSOWTRN bit (writer name), but not both.

If your external writer sets the SSSOUSER bit, the value contained
in the SSSOPGMN field is a userid. Setting the SSSOUSER bit for
userid selection allows your external writer to access the data set if
both:

SSI Function Code 1

20 z/OS V1R4.0 MVS Using the Subsystem Interface

v A data set resource profile in the security product (RACF) does
not exist to protect it.

v The JESSPOOL security class is active. For information on the
JESSPOOL security class, see z/OS Security Server RACF
Security Administrator’s Guide.

If your external writer sets the SSSOWTRN bit, the value contained
in the SSSOPGMN field is a writer name. Setting the SSSOWTRN
bit for writer name selection allows your external writer to access
the data set if both:

v A data set resource profile in the security product (RACF) exists.

v The JESSPOOL security class is active.

Your external writer must set the SSSOSPGM flag bit even if the
SSSOUSER or SSSOWTRN bit is set, so that the SSSOPGMN
field can be used as a selection criterion.

Note, for JES2 external writers that have the SSSOSPGM bit set on
but have not set the SSSOUSER bit or the SSSOWTRN bit, and
have set the SSSOPGMN field to all blank (X’40’) characters, JES2
returns only the data sets whose userid and writer name are both
filled with blank (X’40’) characters.

SSSODEST Destination selected for either a retrieval request or an update
request.

For a retrieval request, your external writer:

v Sets the value of the specific destination in the SSSODEST field
left-justified, and padded to the right with blank (X’40’)
characters.

v Sets the SSSODST bit (or SSSOSDST) for this selection to
occur.

For an update request (JES3 only), your external writer:

v Sets the value of the specific destination in the SSSODEST field
left-justified, and padded to the right with blank (X’40’)
characters.

v Sets the SSSOROUT bit for this selection to occur.

SSSOPGMN Name selected for a retrieval request.

If your external writer set the SSSOWTRN bit in the SSSOFLGA
flag byte, this field contains the writer name. Do not use ’NJERDR’,
’INTRDR’ or ’STDWTR’ as the writer name.

If your external writer set the SSSOUSER bit in the SSSOFLGA
flag byte, this field contains the userid.

Your external writer:

v Sets the value of the specific writer name or userid in the
SSSOPGMN field left-justified, and padded to the right with blank
(X’40’) characters.

v Sets the SSSOSPGM field for this selection to occur.

Note, for JES2 external writers that have the SSSOSPGM bit set on
but have not set the SSSOWTRN bit or the SSSOUSER bit, and
have set the SSSOPGMN field to all blank (X’40’) characters, JES2

SSI Function Code 1

Chapter 3. SSI Function Codes Your Program Can Request 21

returns only the data sets whose writer name and userid are both
filled with blank (X’40’) characters.

SSSODSN Data set name

For the initial retrieval request, your external writer sets this field to
binary zeros. JES returns the name of a SYSOUT data set in this
SSSODSN field.

In a subsequent dynamic allocation, your external writer uses the
name of this data set for processing purposes. See “Processing
Flow for Single Data Set Requests” on page 28 for more
information on this field.

During dynamic unallocation for a single returned data set,
operations, such as changing the destination and releasing the data
set to print, are performed by using the appropriate dynamic
unallocation text unit keys.

For subsequent retrieval requests, your external writer must not
change the SSSODSN field.

For an update request (JES3 only, when the SSSOUFLG bit is
non-zero and the SSSODSN field is zero), the attributes will be
changed for all data sets matching the other selection criteria
specified.

SSSOFORM Form selected (4-character specification) for a retrieval request.

Your external writer:

v Sets the value of the form name in the SSSOFORM field
left-justified and padded to the right with blank (X’40’) characters.

v Sets the SSSOSFRM bit for this selection to occur.

If the SSSOSFR8 bit is also set, specify the 8-character form
name in the SSSOFOR8 field, and this SSSOFORM field is not
used.

If the SSSOSFR8 bit is set, specify the form name in the
SSSOFOR8 field, even if the form name is less than 4
characters.

SSSOCLSL SYSOUT class selected for a retrieval request.

Your external writer must also set the SSSOSCLS bit.

This list can contain one to eight SYSOUT classes as a selection
criteria. JES processes the list from left to right, so that, if JES finds
no data sets using the first character in the list and your external
writer specified more than one class, JES searches the next
SYSOUT class (if present).

For JES3 only, each new SYSOUT class character causes JES to
restart the queue search process. Therefore, for performance
considerations, place the most used SYSOUT classes in the front of
the list.

SSSOWTRC Pointer to writer communications area.

For the initial retrival request, your external writer sets this field to
binary zeros. For JES3 only, for subsequent requests, your external
writer must not change the SSSOWTRC field.

SSI Function Code 1

22 z/OS V1R4.0 MVS Using the Subsystem Interface

The fields that follow from the SSSOFLG5 field through the SSSOFOR8 field are
available as input fields only when you specify SOEXT=YES on the IEFSSSO
invocation. IBM recommends that you specify SOEXT=YES on the IEFSSSO
invocation, as additional information is returned to the external writer.

Field Name Description

SSSOFLG5 Flag byte

Your external writer can set one or more of the following selection
bits:

v SSSOTKNR — Security token length and security token version
information set.

This bit determines whether the caller has supplied the security
token length and security token version information in the field
pointed to by SSSOSECT. JES provides the security token of the
returned data set (mapped to the requested version and length)
upon return from the retrieval request. See z/OS Security Server
RACROUTE Macro Reference for more information.

SSSOSECT Address of a caller-supplied area that contains a security token
(returned only if your external writer specifies the SSSOUSER bit).

If the SSSOTKNR bit has also been set, your external writer must
also provide the length and version of the token that is returned at
the address specified in the SSSOSECT field. JES returns the
security token in the format specified. See the SSSOTKNR bit and
the SSSOTKNG bit on output for additional information.

If the SSSOTKNR bit has also been set off:

v The returned token is at the current level of the security
authorization facility (SAF) security tokens

v The external writer is responsible for providing enough storage
for the transfer to be made.

SSSOFOR8 8-character form name selected

Your external writer must have set both the SSSOSFRM and
SSSOSFR8 bits for this selection to occur.

This field contains an 8-character form name that is left-justified and
padded to the right with blank (X’40’) characters.

If the SSSOSFR8 bit is also set, the 4-character form name in
SSSOFORM is ignored. JES uses the name in the SSSOFOR8
field as the forms selection criteria.

Your external writer must set all other fields in the SSSO control block to binary
zeros before issuing the IEFSSREQ macro.

Output Register Information
When control returns to your external writer, the general purpose registers contain:

Register Contents

0 Used as a work register by the system

1 Address of the SSOB control block

2 — 13 Same as on entry to call

14 Return address

SSI Function Code 1

Chapter 3. SSI Function Codes Your Program Can Request 23

15 Return code

Return Code Information
The SSI places one of the following decimal return codes in register 15. Examine
the return code to determine if the request was processed.

Return Code

(Decimal) Meaning

SSRTOK (0) The Process SYSOUT Data Sets call completed.
Check the SSOBRETN field for specific function
information.

SSRTNSUP (4) The subsystem specified in the SSIBSSNM field
does not support this function.

SSRTNTUP (8) The subsystem specified in the SSIBSSNM field
exists, but it is not active.

SSRTNOSS (12) The subsystem specified in the SSIBSSNM field is
not defined to MVS.

SSRTDIST (16) The pointer to the SSOB control block or the SSIB
control block is not valid, or the function code
specified in the SSOBFUNC field is greater than the
maximum number of functions supported by the
subsystem specified in the SSIBSSNM field.

SSRTLERR (20) Either the SSIB control block or the SSOB control
block has incorrect lengths or formats.

SSRTNSSI(24) The SSI has not been initialized.

Output Parameters
Output parameters for the function routine are:
v SSOBRETN
v SSSO

SSOBRETN Contents: When control returns to your external writer and register 15
contains a zero, the SSOBRETN field contains one of the following decimal values:

Value (Decimal) Meaning

SSSORTOK (0) Successful completion.

SSSOEODS (4) There are no more data sets to select with the
requested selection criteria.

Your external writer has the following options:

v Wait until new work becomes available.

See “The Writer Communication Area” on
page 32 for information about the ECB that will
be posted when work is available. In JES2, this
POST only occurs for those external writers that
are running as started tasks, and not batch jobs.

v Modify the criteria for new work.

Your external writer may modify some of the
entry criteria (for example, change the form
number) to indicate a new selection, and initiate
the IEFSSREQ process. Do not issue an

SSI Function Code 1

24 z/OS V1R4.0 MVS Using the Subsystem Interface

IEFSSREQ with the SSSOCTRL bit set when the
work is for a different set of characteristics.

v Perform job-level (update) disposition (JES3
only).

For example, your function may have been
leaving data sets on the spool until all the data
sets from the job have been completely and
successfully processed. Now, the external writer
can perform a job-level disposition of delete with
a subsequent IEFSSREQ call specifying the job
ID.

v End current activity.

Issue a final IEFSSREQ with the SSSOCTRL bit
set. This completely disassociates the external
writer from the JES. Perform this final call only
when your external writer is ready to end the
operation.

SSSONJOB (8) Job not found.

You specified the job name as a selection criterion,
but the job name specified in the SSSOJOBN field
did not match any job in the system.

SSSOINVA (12) Invalid search argument.

The job ID specified in the SSSOJOBI field failed
syntactical parsing, or both the SSSOWTRN bit and
the SSSOUSER bit had also been set in the
SSSOFLGA flag byte.

SSSODUPJ (20) Duplicate job names

During a retrieval request, more than one job was
found matching the name in the SSSOJOBN field.
A job ID should be specified as a selection criteria
to uniquely identify the job.

SSSOINVJ (24) Invalid job name/job ID combination

During a retrieval request, a job name and job ID
were specified as selection criteria, but the job
name is not associated with the job ID that the
external writer supplied.

SSSOIDST (28) Invalid destination specified in field SSSODEST.

The return code information depends on which JES
is being used:

JES2: The supplied destination did not exist in the
JES destination routing tables.

JES3: The supplied destination is not syntactically
correct (See z/OS MVS JCL Reference for the
correct syntax) or a valid NJE destination was
supplied (an external writer cannot select work
destined for NJE nodes).

SSSOAUTH (32) Authorization failed

SSI Function Code 1

Chapter 3. SSI Function Codes Your Program Can Request 25

(JES3 only) The user exit IATUX30 denied the
external writer access to this request.

SSSOTKNM (36) Token map failed

The requested RACROUTE TOKENMAP function
failed. JES does not set the SSSOTKNG bit, and
no token is provided in the field pointed to by the
SSSOSECT field.

SSSO Contents: The SSSO control block contains the following information about
the data set returned from your external writer’s retrieval request:

Field Name Description

SSSOFLG2 Flag byte

v SSSODDST — DD name set in the extension.

JES sets this flag upon return from a retrieval request, so that
your external writer knows that the SSSOPRCD, SSSOSTPD,
and SSSODDND fields have been returned with the three part
DDNAME of proc-step name, step name, DDNAME.

SSSOCOPY Number of copies.

JES provides the data set to your external writer as many times as
the copy count from the creating JCL specifies it.

The value of this field depends on which JES is being used:

JES2: This field is always set to ’1’ on a retrieval request.

JES3: This field is always set to ’1’ on a retrieval request.

SSSOJOBN Job name associated with the returned data set (retrieval request).

SSSOJOBI Job ID associated with the returned data set (retrieval request).

SSSOCLAS Class associated with the returned data set (retrieval request).

If your external writer set the SSSOSCLS bit and the SSSOCLSL
field, this class matches a class in the list contained in the
SSSOCLSL field (if a multiple class list was specified), or the single
class in the SSSOCLSL field (if only one class was specified).

SSSOMLRL Maximum logical record length associated with the returned data
set.

For JES3, if the length in the SYSOUT data set was not valid, a
zero is returned. If the data set is a system data set, such as
JESJCL, then a value of ’133’ is returned.

SSSODEST Destination associated with the returned data set (retrieval request).

SSSOPGMN Writer name or userid associated with the returned data set
(retrieval request, if available).

The specific information returned depends on the setting of the
SSSOWTRN or SSSOUSER bits (retrieval request).

JES2: If neither the SSSOWTRN or SSSOUSER bits are specified,
then this field contains the writer name associated with this data
set.

SSI Function Code 1

26 z/OS V1R4.0 MVS Using the Subsystem Interface

Note: The SSSOPGMN field is filled in regardless of whether the
SSSOSPGM bit is set. It contains a userid only when the
SSSOUSER bit is set.

SSSODSN Returned data set name (retrieval request).

Upon return from a retrieval request, your external writer must use
this name in the dynamic allocation of the data set. See
“Processing Flow for Single Data Set Requests” on page 28 for
additional details.

The returned data set name is in the fully-qualified, form of:
userid.jobname.jobid.dsnumber.dsname.

SSSOFORM First four characters of the form name associated with the returned
data set name (retrieval request). The SSSOFOR8 field contains
the 8-character form name.

SSSOWTRC Pointer to a communication area for your external writer for a
retrieval request.

This area contains additional information about the:
v Data set
v Owning job
v Wait-for-work ECB.

Your external writer might need to use this information in its
processing. See “The Writer Communication Area” on page 32 for
more information.

The fields that follow from the SSSOFLG5 field through the SSSOOGNM field are
available as output fields only when you specify SOEXT=YES on the IEFSSSO
invocation. The external writer sets the SSSOPSEE bit. IBM recommends that you
specify SOEXT=YES on the IEFSSSO invocation, as additional information is
returned to the external writer.

Field Name Description

SSSOFLG5 Flag byte

v SSSOTKNG — Token mapped.

JES sets the SSSOTKNG bit if the token was returned to the
version requested by your external writer through the setting of
the SSSOTKNR on the retrieval request.

SSSOSECT points to the returned token with its new version and
length.

v SSSOGNVA — (JES2 only) Output group name provided in the
SSSOOGNM field for a retrieval request.

SSSOLNCT Line count of the returned data set provided for a retrieval request.

The value is correct if the task that created the SYSOUT data set
went through end-of-task processing.

The line count includes only records with a non-zero text length that
have data associated with them. The count does not include
records that start with machine immediate control characters. For
example, if a 600-line data set is produced with machine carriage
control characters and includes one Skip-to-Channel-1-Immediate
command every 60 lines, then there would be 610 records in the
data set, but field SSSOLNCT would have a value of 600.

SSI Function Code 1

Chapter 3. SSI Function Codes Your Program Can Request 27

SSSOPRCD Proc step name of the returned data set provided if:
v JES set the SSSODDST bit upon return to your external writer.
v A retrieval request is being made.

SSSOSTPD Data set step name of the returned data set provided if:
v JES set the SSSODDST bit upon return to your external writer.
v A retrieval request is being made.

SSSODDND Data set ddname of the returned data set provided if:
v JES set the SSSODDST bit upon return to your external writer.
v A retrieval request is being made.

SSSOSECT Pointer whose contents remains unchanged from the retrieval
request, but whose address now points to the returned data set
token provided by SAF, if your external writer has set the
SSSOUSER bit.

If your external writer did not set the SSSOTKNR bit, JES copied
the token to the address specified in the SSSOSECT field. This
copy was performed assuming that the receiving length is as long
as the length of a version 1 security token. If your external writer
did not allocate enough storage at the address pointed to by the
SSSOSECT field, a protection exception might occur.

If both:

v Your external writer set the SSSOTKNR bit to indicate to SAF to
return a token with a different version and length on the retrieval
request, and JES successfully performed this function.

v JES set the SSSOTKNG bit

The SSSOSECT field points to the token in the correct format.

SSSOFOR8 Form name of the returned data set name for a retrieval request.

SSSOACCT (JES2 only) Address of an accounting string for the returned data
set for a retrieval request, or zero.

Your external writer must be in AMODE 31 to access this data. The
data is in the following format:

v A 1-byte field containing the number of pairs that follow.

v Zero or more accounting pairs, each of the form:

– A 1-byte field containing the length of the accounting string.

– The actual accounting string itself with the length that is
specified in the first byte.

A length of zero indicates an omitted field.

For example, if the original accounting information had been
specified as (12,,ABCD), the field pointed to by the SSSOACCT
would be: ’03 02 F1 F2 00 04 C1 C2 C3 C4’ in storage.

SSSOOGNM (JES2 only) JES2 output group name of the returned data set.

The SSSOGNVA flag is set if the field is valid.

Processing Flow for Single Data Set Requests
Your external writer can process single data set requests by:
v (JES2 and JES3) Processing one data set at a time.
v (JES3 only) Processing all data sets together (update request).

SSI Function Code 1

28 z/OS V1R4.0 MVS Using the Subsystem Interface

Processing One Data Set at a Time (JES2 and JES3): Your external writer can
use the following steps for proper selection, allocation, retrieval, and unallocation of
an individual SYSOUT data set:

1. Build the appropriate SSOB and SSSO control blocks for the request according
to the individual selection criteria desired.

2. Issue the IEFSSREQ macro asking JES for the name of a data set.

This step includes setting the SSSOUFLG flag byte to X’00’, and the
SSSOCTRL bit to 0.

Upon return the name of the data set is in the SSSODSN field.

3. Allocate the data set through dynamic allocation (DYNALLOC macro).

Your external writer can use the following text units:

v DALDSNAM

Used with the returned name from the SSSODSN field.

v DALSSREQ

Indicates a request that JES needs to handle. The parameter value in this
text unit is the name of the subsystem that processed the IEFSSREQ macro.

v DALRTDDN

Indicates the DDNAME associated with the allocation be returned to the
caller of DYNALLOC. Your external writer then places this DDNAME in the
DCB macro that needs to open the SYSOUT data set as input for your reads.
Prime the parameter in this text unit with blank (X’40’) characters before
issuing the DYNALLOC macro. This text unit is returned from DYNALLOC
with the correct DDNAME.

Your external writer will also use this DDNAME in the dynamic unallocation of
the data set when performing unallocation processing.

4. Open the program-supplied DCB.

Move the returned DDNAME from the DALRTDDN field as the DCB’s DDNAME
before issuing the OPEN.

The following is an example of a DCB that may be used to obtain the records:
INDCB DCB DSORG=PS,MACRF=GL,BUFNO=1, X

SYNAD=some-routine,EODAD=some-routine

Note: Multiple QSAM buffers here do not improve performance. IBM
recommends BUFNO=1.

Your program can issue BSAM and QSAM macros in 31-bit mode. See z/OS
DFSMS Macro Instructions for Data Sets.

5. Optionally open any other devices that the program requires.

6. Access the records in the SYSOUT data set.

7. Upon EODAD, close the input DCB and issue the FREEPOOL macro unless
you coded RMODES31=BUFF on the DCBE macro.

8. Unallocate the data set through dynamic allocation (DYNALLOC).

Optionally, you can perform disposition processing to change the attributes of
the returned data set.

The specific text units to be used are:

v DUNDDNAM

This text unit indicates an unallocation by DDNAME. The DDNAME the
external writer must use is the same one used for the data set allocation.

v DUNOVDSP

SSI Function Code 1

Chapter 3. SSI Function Codes Your Program Can Request 29

This text unit indicates a disposition override. You must specify one of the
following:

– Keep the data set on the spool. For JES2, when you specify keep as the
disposition, JES2 assumes that the external writer has failed and treats
the next PSO request as if you had set the SSSOCTRL bit.

– Delete the data set from the spool.

If you are performing immediate disposition and wish to delete the data set,
use the X’04’ value as the disposition flag. Otherwise, you can use the X’08’
value to keep the data set on the spool.

Optionally you may use any of the following text units to modify the queue,
change the destination, or change the SYSOUT class of the data set during
unallocation.

In JES3, the only queue modification you can make is moving the data set from
the HOLD queue to the WRITER queue.

v DUNOVSNH

For JES2, the data set selected is already on the output queue with a
disposition of WRITE or KEEP, and this text unit is not specifiable.

For JES3, this text unit removes the data set from the HOLD queue, and puts
it on the WRITER queue.

v DUNOVCLS

For JES3, this text unit changes the SYSOUT class of the data set on the
HOLD queue.

v DUNOVSUS

For JES3, this text unit overrides the destination of the SYSOUT data set,
and can be used to route SYSOUT to another destination.

9. Either issue the IEFSSREQ macro again for another data set, or issue the
IEFSSREQ macro for a final call (the SSSOCTRL bit is set), to disassociate the
program from JES.

Processing All Data Sets Together (JES3 only - update request): Your external
writer performs the actions specified in the SSSO control block in all data sets
matching the selection criteria in the SSSO control block, when the IEFSSREQ
macro is issued with a non-zero SSSOUFLG flag byte. Individual data set names
are not returned in this case.

The SSSODSN field can be zero if more than one data set matching the other
selection criteria is modified. Any previously allocated single data sets must be
unallocated, however, before this update request is made.

External Writer Considerations
A standard external writer is designed to request work and perform disposition
processing of work to each JES in the following ways:

v It is initiated from the user’s address space

Therefore, it is a completely separate MVS job. This separation allows for
processing overlap and address space integrity. In JES3, because the SSI is
involved for scheduling communication, the external writers may exist on local
processors as well as the global processor.

v It is functionally independent of JES

There is neither a print processor running in the JES2 address space, nor a
writer DSP running in the JES3 global address space.

SSI Function Code 1

30 z/OS V1R4.0 MVS Using the Subsystem Interface

v It is not automatically started by JES

MVS does not supply an automatic facility to create this address space. If the
external writer is running as a started task, you can use an operator START
command to create this address space or you can submit a batch job. Your
application (external writer) makes this decision. Your external writer should also
have a mechanism to end itself.

v It may drive a non-JES supported device

This is the primary purpose of the external writer. If the SYSOUT data set deals
with plotting, for instance, a special code in the data may indicate to use the red
pen instead of the blue pen. Your external writer can recognize this code as a
control sequence, and perform the appropriate actions according to the output
device.

v It allows the installation to control the selection of work

Standard external writers select work through a SYSOUT class dedicated to
external writers or a writer name. JES2 and JES3 handle external writer
processing differently.

JES2: The work to be processed is located on the output queue, and has an
OUTDISP of WRITE or KEEP. However, conversational data sets, which include
data sets located on the output queue with an OUTDISP of HOLD or LEAVE, are
not processed in JES2 by the standard external writer. These data sets are
destined to be processed by TSO/E users through the OUTPUT command.

JES3: The work to be processed is located on either the WRITER queue, or the
HOLD queue. However, IBM recommends that you process only data sets on the
HOLD queue (either by specific SYSOUT class specification as defined on the
initialization statement, or by writer name).

Note: Work destined for TSO/E users (through HOLD=TSO on the specific
SYSOUT class initialization statement) is not processed because those
data sets are destined to be processed by TSO/E users through the
OUTPUT command.

v It does not handle simultaneous multi-tasking within an address space

The external writer facility in JES does not support concurrent subtasking of
work. Unpredictable results will occur if attempted. Once an external writer
begins the IEFSSREQ process the first time, calls through the IEFSSREQ are
not allowed from any other subtask in the same address space until the first
subtask has finished issuing its final call through (SSSOCTRL) IEFSSREQ.

v It interacts with JES by requesting work

The external writer makes a request of JES for work by using the selection
criteria, and then uses dynamic allocation to allocate a returned SYSOUT data
set for processing.

v It handles retrieval requests

Both JES2 and JES3 support retrieval requests. That is, the external writer
issues the IEFSSREQ macro asking JES to supply the name of a selectable
SYSOUT data set. The external writer processes that data set through dynamic
allocation. See “Processing Flow for Single Data Set Requests” on page 28 for
more information on the processing flow.

Updates to selected attributes for a particular data set (such as destination and
class change) can be made through the unallocation facility as described within
this documentation.

v It handles update requests

An update request is allowable only for JES3.

SSI Function Code 1

Chapter 3. SSI Function Codes Your Program Can Request 31

JES3 allows update requests through the IEFSSREQ macro for one or more data
sets whose selection criteria matches the criteria supplied by the external writer
directly through the IEFSSREQ macro.

However, individual data sets obtained through the IEFSSREQ retrieval/allocation
process should have their attributes changed during the dynamic unallocation as
described in the retrieval information above.

Update requests may be performed on more than one data set at a time when
the external writer:

– Issues the IEFSSREQ macro

– Does not specify a specific data set name within the SSSO control block.

This is a powerful facility. However, you should be careful when using it, as the
scope of such a modification may be large when more than one data set is
involved.

v It uses MVS services to communicate to JES

SSI function code 1 schedules work by allowing the external writer to indicate
which types of data sets it wishes to process and then asking JES to return the
name of a SYSOUT data set to the external writer. Dynamic allocation of this
spooled data set is performed through dynamic allocation (DYNALLOC). The
records of the spooled data set may be obtained through sequential access
methods (SAM GETs). A dynamic unallocation is used to deallocate the SYSOUT
data set (upon EODAD), which optionally changes some of its attributes.

v Spool access is provided by sequential access methods

SAM is used to obtain the records of the SYSOUT data set from the spool. This
implies familiar coding techniques, such as OPENs, GETs, and CLOSEs.

v It handles all data record processing

Once a record is supplied to the external writer on a GET, the external writer has
control of the record. For example, it can print the record or archive the record,
depending on the purpose of the external writer.

v It may wait for JES to post it for new work if idle

When JES sends a no-work-available notice to the external writer, it may sit idle
until it receives a POST from JES, telling it that work is available. It may then ask
JES again for the newly available work.

This process uses WAIT and POST logic with an ECB returned to the external
writer.

JES2 does not POST the external writer if invoked from a batch job; it must be a
started task for such posting to occur.

The Writer Communication Area
On return from the IEFSSREQ macro, the SSSOWTRC field contains a pointer to
the writer communication area, a series of fields in storage.

The first field in this area is a wait-for-work ECB that JES posts when work
becomes available and an SSSOEODS return was previously issued. If you had
received an SSSOEODS return, you could wait on this fullword and then retry your
request (another IEFSSREQ macro).

All of the fields following the first fullword contain data about the data set returned
during retrieval requests, and are contiguous in storage.

Writer Communication Area Contents: The fields in the writer communication
area contain:

SSI Function Code 1

32 z/OS V1R4.0 MVS Using the Subsystem Interface

v Wait-for-work ECB (described earlier).

Length of 4 bytes.

v Start time of the job creating the SYSOUT data set returned. The format is from
the TIME macro with BIN specified.

Length of 4 bytes.

v Start date of the job creating the SYSOUT data set returned, in packed decimal
form where F is the sign: 0cyydddF.

Length of 4 bytes.

v Owner of the output created by the job. This is the userid associated with the job
that created the SYSOUT.

Length of 8 bytes.

Example
The following is a coded example of a program that generates a Process SYSOUT
Data Set call. It requests a SYSOUT data set from JES through a writer name and
reads each record of the data set. When the routine reaches the end of the data,
the SYSOUT data set is deallocated and the SYSOUT class and destination are
updated. The routine ends and cycles back to the beginning to ask JES for the next
data set.

This routine is non-reentrant, and must reside below 16 megabytes in an
APF-authorized library.
SSIREQ01 TITLE ’- DOCUMENTATION’
SSIREQ01 AMODE 31
SSIREQ01 RMODE 24

SPLEVEL SET=4

* FUNCTION: THIS PROGRAM PERFORMS THE FOLLOWING FUNCTIONS: *
* *
* 1. REQUESTS A SYSOUT DATA SET FROM JES THROUGH A WRITER *
* NAME (SHOWS AN EXAMPLE OF USING ONE OF THE AVAILABLE *
* SELECTION CRITERIA TO INFLUENCE WHICH SYSOUT DATA SET *
* IS SELECTED). THIS PROGRAM IS INTENDED TO RUN ON JES3 *
* ONLY, AS IT SHOWS SELECTION CRITERIA AVAILABLE ONLY TO *
* JES3. (SPECIFICALLY, BIT SSSOHLD IS USED.) *
* 2. IF ONE IS NOT AVAILABLE, THE OPERATOR CAN WAIT UNTIL *
* ONE IS AVAILABLE, OR EXIT THE PROGRAM. *
* 3. IF ONE IS AVAILABLE, IT IS DYNAMICALLY ALLOCATED. *
* 4. EACH RECORD IS READ AND DISPLAYED TO THE OPERATOR. *
* 5. UPON END-OF-DATA, THE SYSOUT DATA SET IS DEALLOCATED. *
* THE SYSOUT CLASS IS CHANGED TO ’A’, AND THE *
* DESTINATION IS CHANGED TO ’PRT803’. *
* (SHOWS AN EXAMPLE OF USING THE AVAILABLE DYNAMIC *
* ALLOCATION TEXT UNIT TO CHANGE THE ATTRIBUTES OF THE *
* RECEIVE SYSOUT DATA SET DURING UNALLOCATION.) *
* 6. THE PROGRAM THEN CYCLES BACK AND ASKS JES FOR THE NEXT *
* DATA SET (GOES TO STEP 1). *
* *
* NAME OF MODULE: SSIREQ01 *
* *
* REGISTER USE: *
* *
* 0 PARM REGISTER *
* 1 PARM REGISTER *
* 2 SSOB *
* 3 SSSO *
* 4 DCB *
* 5 RB *
* 6 MAX RECORD LENGTH *
* 7 DUMP CODE *
* 8 ABEND VALUE REGISTER *

SSI Function Code 1

Chapter 3. SSI Function Codes Your Program Can Request 33

* 9 IEFSSREQ RETURN CODES *
* 10 BASE REGISTER *
* 11 TEXT RECORD STRUCTURE PTR *
* 12 UNUSED *
* 13 SAVE AREA CHAIN REGISTER *
* 14 PARM REGISTER / RETURN ADDR *
* 15 PARM REGISTER / COND CODE *
* *
* ATTRIBUTES: SUPERVISOR STATE, AMODE(31), RMODE(24) *
* *

* *
* NOTE: THIS IS A SAMPLE. *

TITLE ’- EQUATES’

* GENERAL EQUATES *

EQUHOBON EQU X’80000000’ HIGH ORDER BIT ON
FF EQU X’FF’ ALL BITS ON IN A BYTE

* AFTER COMPARE INSTRUCTIONS *

GT EQU 2 A HIGH
LT EQU 4 A LOW
NE EQU 7 A NOT EQUAL B
EQ EQU 8 A EQUAL B
GE EQU 11 A NOT LOW
LE EQU 13 A NOT HIGH
*

* AFTER ARITHMETIC INSTRUCTIONS *

OV EQU 1 OVERFLOW
PLUS EQU 2 PLUS
MINUS EQU 4 MINUS
NZERO EQU 7 NOT ZERO
ZERO EQU 8 ZERO
ZEROS EQU 8 ZERO
NMINUS EQU 11 NOT MINUS
NOV EQU 12 NOT OVERFLOW
NPLUS EQU 13 NOT PLUS
*

* AFTER TEST UNDER MASK INSTRUCTIONS *

ALLON EQU 1 ALL ON
MIXED EQU 4 MIXED
NALLOFF EQU 5 ALLON+MIXED
ALLOFF EQU 8 ALL OFF
NALLON EQU 12 ALLOFF+MIXED

* ABEND CODE INDICATIONS *

BADR15 EQU 1 IEFSSREQ R15 NON-ZERO
BADRETN EQU 2 SSOBRETN NON-ZERO AND NOT 8
BADS99A EQU 3 DYNALLOC ALLOC FAILED
BADOPEN EQU 4 OPEN DCB FAILED
BADS99U EQU 5 DYNALLOC UNALLC FAILED
BADRLEN EQU 6 PSO DATASET TOO LARGE (RECLEN)

* GENERAL PURPOSE REGISTERS *

R0 EQU 0 PARM REGISTER
R1 EQU 1 PARM REGISTER
R2 EQU 2 SSOB
R3 EQU 3 SSSO

SSI Function Code 1

34 z/OS V1R4.0 MVS Using the Subsystem Interface

R4 EQU 4 DCB
R5 EQU 5 RB
R6 EQU 6 MAX RECORD LENGTH
R7 EQU 7 DUMP CODE
R8 EQU 8 ABEND VALUE REGISTER
R9 EQU 9 RETURN CODES OR REASONS
R10 EQU 10 BASE REGISTER
R11 EQU 11 TEXT RECORD STRUCTURE PTR
R12 EQU 12 UNUSED
R13 EQU 13 SAVE AREA CHAIN REGISTER
R14 EQU 14 PARM REGISTER / RETURN ADDR
R15 EQU 15 PARM REGISTER / COND CODE

TITLE ’- CVT - COMMUNICATIONS VECTOR TABLE’
CVT DSECT=YES,LIST=NO
TITLE ’DCBD’
DCBD DSORG=PS
TITLE ’- IEFJESCT - JES CONTROL TABLE’
IEFJESCT TYPE=DSECT
TITLE ’- SSOB’
IEFSSOBH

SSOBGN EQU * START OF FUNCTIONAL EXTENSION
TITLE ’- SSSO’
IEFSSSO SOEXT=YES
TITLE ’- IEFZB4D0 - SVC99 DSECTS’
IEFZB4D0
TITLE ’- IEFZB4D2 - TU KEYS’
IEFZB4D2

* HOUSEKEEPING *

SSIREQ01 CSECT

SAVE (14,12) FORM ID
BALR R10,0 ESTABLISH BASE REG
USING *,R10 INFORM ASSEMBLER
LA R2,SA CHAIN SAVEAREAS
ST R13,4(R2) OLD IN NEW
ST R2,8(R13) NEW IN OLD
LR R13,R2 RECHAIN THE SAVE AREAS
TITLE ’- PROCESS SYSOUT’
WTO ’SSI CODE 01 Version 1’ LET OP KNOW WHAT LEVEL
STORAGE OBTAIN, GET STORAGE FOR SSOB/SSSO

LENGTH=SSOBLEN1,
COND=NO

LR R2,R1 SAVE BEGINNING OF STORAGE
USING SSOBEGIN,R2 INFORM ASSEMBLER
LA R3,SSOBGN PT TO BEGINNING OF SSSO
USING SSSOBGN,R3 INFORM ASSEMBLER
TITLE ’- SSOB PROCESSING’

* NOW WORK ON THE SSOB. THE LIFE-OF-JOB IS USED HERE, SO THE *
* SSOBSSIB IS ZERO. *

XC SSOB(SSOBHSIZ),SSOB CLEAR THE SSOB
MVC SSOBID,=CL4’SSOB’ SSOB INITIALS INTO SSOB
MVC SSOBFUNC,=AL2(SSOBSOUT) MOVE FUNCTION ID INTO SSOB
MVC SSOBLEN,=AL2(SSOBHSIZ) MOVE SIZE INTO SSOB
ST R3,SSOBINDV SAVE THE SSSO ADDRESS
TITLE ’- SSSO PROCESSING’

* NOW WORK ON THE SSSO. SELECT A SELECTION CRITERIA BASES ON *
* AN EXTERNAL WRITER NAME OF ’ANDREW’. *

XC SSSOBGN(SSSOSIZE),SSSOBGN CLEAR THE SSSO
MVC SSSOLEN,=AL2(SSSOSIZE) SET THE SIZE OF THE SSSO
MVI SSSOVER,SSSOCVER SET THE VERSION NUMBER
OI SSSOFLG1,SSSOSPGM+SSSOHLD SELECT BY WRITER NAME AND

* THE HOLD QUEUE

SSI Function Code 1

Chapter 3. SSI Function Codes Your Program Can Request 35

OI SSSOFLGA,SSSOWTRN IND. THAT SELECTION IS BY
* WRITER NAME, NOT USERID

MVC SSSOPGMN,=CL8’ANDREW’ IND. CORRECT WRITER NAME
* THAT IS USED AS SELECTION

OI SSSOFLG2,SSSOPSEE IND. LONG FORM OF IEFSSSO

* NOW GO TAP JES ON THE SHOULDER FOR A DATASET! *

NEXTDS DS 0H GET NEXT DSNAME FROM JES

MODESET MODE=SUP GET INTO SUPERVISOR STATE
LR R1,R2 R1=ADDRESS OF SSOB
O R1,=A(EQUHOBON) TURN ON THE HIGH-ORDER BIT
ST R1,MYSSOBPT SAVE POINTER FOR SSREQ
LA R1,MYSSOBPT POINT TO SSOB POINTER
IEFSSREQ , GO TO JES FOR A DATASET
MODESET MODE=PROB BACK TO PROBLEM STATE
LA R8,BADR15 ASSUME BAD REG 15 RETURN
LTR R9,R15 DID THE IEFSSREQ WORK OK?
BC NZERO,ABEND NOT GOOD...TAKE AN ABEND
LA R8,BADRETN ASSUME BAD SSOBRETN
ICM R9,B’1111’,SSOBRETN CHECK OUT SSOBRETN
BC NZERO,TESTIT NON-ZERO, INVESTIGATE FURTHER

* WE HAVE A DATA SET. NOW DYNAMICALLY ALLOCATE IT, READ AND DISPLAY*
* THE RECORDS USING SEQUENTIAL ACCESS METHOD AS EXAMPLE OF HOW TO *
* RETRIEVE THE DATA. *

TITLE ’- ALLOCATE RETURNED DATASET’

* ALLOCATE THE RETURNED SYSOUT DATASET *

LA R8,BADRLEN ASSUME SIZE TOO LARGE FOR WTO
SR R6,R6 CLEAR REG 6
ICM R6,B’0011’,SSSOMLRL GET MAX RECORD LENGTH
CH R6,=H’150’ IS MAX RCD LENGTH>150??
BC GT,ABEND YES - TIME FOR US TO GO HOME
STH R6,RECLEN SAVE MAX RECORD LENGTH
LA R5,MY99RB PT TO RB
USING S99RB,R5 ADDRESSABILITY TO THE RB
XC S99RB(RBLEN),S99RB ZERO THE RB
MVI S99RBLN,RBLEN RB LENGTH
MVI S99VERB,S99VRBAL RB VERB CODE=ALLOC
LA R1,MY99TPTA ADDR SVC 99 ALLOC TU PTRS
ST R1,S99TXTPP STORED IN RB
LA R1,MY99RBPT PT TO RB POINTER
MVC TXTDSNAM,SSSODSN MOVE DATASET NAME TO BE ALLOCATED
DYNALLOC ISSUE DYNAMIC ALLOCATION
LA R8,BADS99A ASSUME IT DIDN’T WORK
LR R9,R1 COPY FOR DUMP
LTR R15,R15 SVC 99 WORK OKAY??
BC NZERO,ABEND NO, TAKE A DUMP

* SYSOUT DATASET ALLOCATED OKAY. MOVE RETURNED DDNAME INTO *
* THE DCB PRIOR TO OPENING IT. *

LA R4,INDCB PT TO THE INPUT DCB
USING IHADCB,R4 ADDRESSABILITY
MVC DCBDDNAM(8),TXTDDA99 MOVE IN RETURNED DDNAME
MVC TXTDDU99,TXTDDA99 SAVE FOR UNALLOCATION
MVC DCBLRECL,SSSOMLRL MOVE MAX LENGTH RECORD IN

* *
OPEN INDCB OPEN THE DCB
LA R8,BADOPEN ASSUME THE OPEN FAILED
LR R9,R4 COPY FOR DUMP
TM DCBOFLGS,DCBOFOPN DID IT WORK?

SSI Function Code 1

36 z/OS V1R4.0 MVS Using the Subsystem Interface

BC ALLOFF,ABEND NOPE, TAKE A DUMP
TITLE ’- GET THE RECORDS - DISPLAY TO PROGRAM’

GETNEXT DS 0H LOOP FOR READING/DISPLAYING

* SWITCH TO 24 BIT MODE FOR GET MACRO *

LA R15,SSITO24 SWITCH TO 24 BIT MODE ...
BSM 0,R15 ... FOR RESTRICTED MACRO

SSITO24 DS 0H
GET INDCB R1==> RECORD AFTER THE GET
L R15,SSITO31A RETURN TO 31 BIT MODE ...
BSM 0,R15 ... AND CONTINUE

SSITO31A DC A(SSITO31+EQUHOBON) FOR MODE SWITCHING

* RETURN TO 31 BIT MODE AND CONTINUE *

SSITO31 DS 0H

EX R6,MOVEIT MOVE UP TO 150 BYTES OF REC
LA R11,RECLEN POINT TO RECORD FOR OUTPUT
WTO TEXT=(11),ROUTCDE=11 DISPLAY TO JOBLOG
MVI RECTEXT,C’ ’ CLEAR RECORD OUT...
MVC RECTEXT+1(L’RECTEXT-1),RECTEXT ..FOR NEXT ONE
B GETNEXT GO GET NEXT RECORD
TITLE ’- EODAD ROUTINE’

MYEODAD DS 0H END-OF-DATASET
CLOSE INDCB CLOSE THE INPUT DCB
DROP R4 IHADCB

* UNALLOCATE THE SYSOUT DATASET, CHANGING CLASS + DESTINATION *

XC S99RB(RBLEN),S99RB ZERO THE RB
MVI S99RBLN,RBLEN RB LENGTH
MVI S99VERB,S99VRBUN RB VERB CODE=UNALLOC
LA R1,MY99TPTU ADDR SVC 99 ALLOC TU PTRS
ST R1,S99TXTPP STORED IN RB
LA R1,MY99RBPT PT TO RB POINTER
DYNALLOC ISSUE DYNAMIC UNALLOCATION
LA R8,BADS99U ASSUME IT DIDN’T WORK
LR R9,R1 COPY FOR DUMP
LTR R15,R15 SVC 99 WORK OKAY??
BC NZERO,ABEND NO, TAKE A DUMP
B NEXTDS GO GET NEXT DATA SET
TITLE ’- BAD RETURN FROM IEFSSREQ’

TESTIT DS 0H

* R8 HAS THE ’BADRETN’ ASSUMPTION VALUE FOR POSSIBLE ABEND. *
* R9 HAS A NON-ZERO VALUE FROM SSOBRETN FROM THE IEFSSREQ. *

CH R9,NOMORE END OF DATA SET RETURN?
BC NE,ABEND NOPE - QUIT!

* WE RECEIVED THE END-OF-DATA CONDITION. ASK WHETHER WE *
* SHOULD WAIT ON RETURNED ECB, OR COMPLETE NOW, *

XC MYECB,MYECB CLEAR THE ECB
WTOR ’ENTER ’W’ OR WAIT, ANYTHING ELSE TO EXIT’,

MYREPLY,
1,
MYECB

WAIT ECB=MYECB
OI MYREPLY,C’ ’ FORCE REPLY TO UPPER CASE
CLI MYREPLY,C’W’ SHOULD WE WAIT?
BC NE,EXIT NO, EXIT

* WAIT INDICATED. SET UP WAIT ON THE RETURNED ECB. *

SSI Function Code 1

Chapter 3. SSI Function Codes Your Program Can Request 37

MODESET KEY=ZERO GET INTO KEY 0
L R1,SSSOWTRC POINT TO RETURNED DATA AREA
WAIT ECB=(1) R1==>RETURNED WAIT-FOR ECB
MODESET KEY=NZERO BACK TO ORIGINAL
B NEXTDS WE’RE POSTED - GO GET IT!
TITLE ’- CLOSE OUT ROUTINES’

EXIT DS 0H FINAL CALL, RETURN TO MVS
MVI SSSOFLG2,SSSOCTRL IND. FINAL CALL TO JES
MODESET MODE=SUP GET INTO SUPERVISOR STATE
LA R1,MYSSOBPT POINT TO SSOB POINTER
IEFSSREQ , GO TO JES FOR GIVE BACK
MODESET MODE=PROB BACK TO PROBLEM STATE....
STORAGE RELEASE, FREE SSOB/SSSO

LENGTH=SSOBLEN1,
ADDR=(R2) HERE’S WHERE IT LIVES

L R13,4(,R13) OLD SA PTR
RETURN (14,12),RC=0 BACK TO MVS
TITLE ’- ABEND ROUTINES’

* THIS IS THE ABEND ROUTINE. R8 CONTAINS THE PROGRAM REASON CODE, *
* R9 CONTAINS SPECIFIC ERROR/REASON CODE AS RETURNED BY THE *
* SERVICE ROUTINE. *

ABEND DS 0H ISSUE THE ABEND MACRO

ABEND (8),DUMP,STEP TAKE A DUMP IF WANTED
TITLE ’- DATA AREAS’

SA DS 9D SAVE AREAS
MYECB DS F DOUBLEWORD FOR WTOR
*
MYREPLY DS CL1 REPLY AREA FOR WTORS
RESRV DS XL3 ROUND TO FULL WORD

TITLE ’- DYNALLOC DATA’

* THE FOLLOWING CONTROL BLOCKS ARE FOR DYNAMIC ALLOCATION AND *
* UNALLOCATION. *

* S99 REQUEST BLOCK POINTER *

MY99RBPT DC A(EQUHOBON+MY99RB) S99 RB PTR

* S99 REQUEST BLOCK *

MY99RB DS CL(RBLEN) MY SVC 99 RB
RBLEN EQU (S99RBEND-S99RB) LENGTH OF RB FOR MY99RB

* TEXT UNIT POINTERS FOR ALLOCATION *

MY99TPTA DC A(TXTDALDS) TU FOR DATASET NAME

DC A(TXTSSREQ) NAME OF SUBSYSTEM TU PTR
DC A(EQUHOBON+TXTRTDDN) RETURN DD NAME TU

* TEXT UNIT POINTERS FOR UNALLOCATION *

MY99TPTU DC A(TXTDUNDD) TU FOR UNALLOC BY DDNAME

DC A(TXTDUNNH) NOHOLD TU
DC A(TXTDUNCL) CHANGE THE CLASS TU
DC A(EQUHOBON+TXTDUNDS) CHANGE THE DEST TU

* TEXT UNITS FOR ALLOCATION *

TXTDALDS DC AL2(DALDSNAM) DATASET NAME KEY

DC X’0001’ NUMBER
DC AL2(44) DSNAME LENGTH

TXTDSNAM DS CL44’ ’ DSNAME FROM IEFSSREQ
TXTCLOSE DC AL2(DALCLOSE) UNALLOCATE AT CLOSE KEY

DC X’0000’ # FIELD (0000 REQUIRED)
TXTSSREQ DC AL2(DALSSREQ) REQUEST OF SUBSYSTEM

SSI Function Code 1

38 z/OS V1R4.0 MVS Using the Subsystem Interface

DC X’0001’ # FIELD (0001 REQUIRED)
DC X’0004’ LEN OF SS NAME FOLLOWING
DC CL4’JES3’ NAME OF SUBSYSTEM

TXTRTDDN DC AL2(DALRTDDN) RETURN DDNAME FIELD
DC X’0001’ # FIELD (0001 REQUIRED)
DC X’0008’ LEN OF PARM

TXTDDA99 DC CL8’ ’ RETURNED DDNAME PARM FIELD

* TEXT UNITS FOR UNALLOCATION *

TXTDUNDD DC AL2(DUNDDNAM) TU FOR DDNAME UNALLOC

DC X’0001’ NUMBER
DC AL2(8) DDNAME LENGTH

TXTDDU99 DS CL8’ ’ DDNAME FROM DYNALLOC
TXTDUNNH DC AL2(DUNOVSNH) TU FOR NOHOLD

DC X’0000’ # FIELD (0000 REQUIRED)
TXTDUNCL DC AL2(DUNOVCLS) TU FOR CHANGE OF CLASS

DC X’0001’ # FIELD (0001 REQUIRED)
DC X’0001’ LEN OF SYSOUT CLASS
DC CL1’A’ CHANGED SYSOUT CLASS

TXTDUNDS DC AL2(DUNOVSUS) TU FOR CHANGE OF REMOTE
DC X’0001’ # FIELD (0001 REQUIRED)
DC X’0008’ LEN OF CHANGED REMOTE
DC CL8’PRT803’ CHANGED REMOTE NAME

MYSSOBPT DS F POINTER TO SSOB FOR IEFSSREQ
NOMORE DC AL2(SSSOEODS) NO MORE DATASETS FROM JES
MOVEIT MVC RECTEXT(*-*),0(R1) OBJ OF AN EXECUTE
RECLEN DS H LENGTH OF OUTPUT RECORD
RECTEXT DS CL150 UP TO 150 BYTES OF SYSOUT
INDCB DCB DSORG=PS,MACRF=GL,BUFNO=2,EODAD=MYEODAD, X

DDNAME=WILLCHNG
TITLE ’- LITERALS’
LTORG ,
END

SSI Function Code 1

Chapter 3. SSI Function Codes Your Program Can Request 39

Verify Subsystem Function Call — SSI Function Code 15
The Verify Subsystem Function call (SSI function code 15) allows a user-supplied
program to:

v Verify the existence of a specific subsystem

v Obtain the address of the SSCVT that corresponds to a specific subsystem

v Obtain the subsystem affinity index value used when making subsystem affinity
requests.

Notes:

1. The subsystem index value is valid only for use on the MVS processor on which
it was obtained and only during the current IPL.

2. A valid subsystem affinity index value is returned only for subsystems defined
through the methods described in “Defining Your Subsystem” on page 156.

For more information, see “Maintaining Information About the Callers of Your
Subsystem” on page 175.

Type of Request
Directed SSI call.

Issued to
Master subsystem.

Related SSI Codes
None.

Related Concepts
You need to understand the subsystem affinity service. See “Maintaining Information
About the Callers of Your Subsystem” on page 175 for more information.

Environment
The caller (issuer of the IEFSSREQ macro) must include the following mapping
macros:
v CVT
v IEFJESCT

Data areas commonly referenced are mapped by the following mapping macros.
IBM recommends you include them in your program:
v IEFSSOBH
v IEFJSSIB
v IEFSSVS

The caller must meet the following requirements:

Minimum Authorization Problem state, any PSW key
Dispatchable unit mode Task or SRB
AMODE 24-bit or 31-bit
Cross memory mode PASN=HASN=SASN
ASC mode Primary
Interrupt status Enabled for I/O and external interrupts
Locks No locks held
Control Parameters The SSOB, SSIB, and SSVS control blocks can reside

above or below 16 megabytes.

SSI Function Code 15

40 z/OS V1R4.0 MVS Using the Subsystem Interface

Recovery The caller should provide an ESTAE-type recovery
environment. See z/OS MVS Programming: Assembler
Services Guide for more information on an ESTAE-type
recovery environment.

Figure 5 shows the environment at the time of the call for SSI function code 15.

Input Register Information
Before issuing the IEFSSREQ macro, the caller must ensure that the following
general purpose registers contain:

Register Contents

1 Address of a 1-word parameter list that has the high-order bit on
and a pointer to the SSOB control block in the low-order 31 bits.

13 Address of a standard 18-word save area

Input Parameters
Input parameters for the function routine are:
v SSOB
v SSIB
v SSVS

Register 1

'1'b SSOB

SSOB

'SSOB' (SSOBID)

Length
(SSOBLEN)

Function ID
(SSOBFUNC)

SSIB

'SSIB' (SSIBID)

Length (SSIBLEN)

Master Subsystem name
to be validated (SSIBSSNM)

Length
(SSVSLEN)

SSVS

SSIB (SSOBSSIB) or zero

Function Dependent Area
(SSOBINDV)

Subsystem name
to be validated (SSIBJBID)

Figure 5. Environment at Time of Call for SSI Function Code 15

SSI Function Code 15

Chapter 3. SSI Function Codes Your Program Can Request 41

SSOB Contents: The caller sets the following fields in the SSOB control block on
input:

Field Name Description

SSOBID Identifier ’SSOB’

SSOBLEN Length of the SSOB (SSOBHSIZ) control block

SSOBFUNC SSI function code 15 (SSOBVERS)

SSOBSSIB Address of an SSIB control block or zero (if this field is zero, the
life-of-job SSIB is used). See “Subsystem Identification Block
(SSIB)” on page 8 for more information on the life-of-job SSIB.

SSOBINDV Address of the function dependent area (SSVS control block)

Set all other fields in the SSOB control block to binary zeros before issuing the
IEFSSREQ macro.

SSIB Contents: If you don’t use the life-of-job SSIB, the caller must provide an
SSIB and set the following fields in the SSIB control block on input:

Field Name Description

SSIBID Identifier ’SSIB’

SSIBLEN Length of the SSIB (SSIBSIZE) control block

SSIBSSNM Subsystem name — name of the subsystem that this verify
subsystem function call is directed to (MSTR).

SSIBJBID Name of the subsystem to be verified

Note: This is an 8-character field. Because subsystem names can
only be 1-4 characters, the subsystem name specified
should be left-justified and padded to the right with blank
(X’40’) characters.

Set all other fields in the SSIB control block to binary zeros before issuing the
IEFSSREQ macro.

SSVS Contents: The caller sets the following fields in the SSVS control block on
input:

Field Name Description

SSVSLEN Length of the SSVS (SSVSSIZE) control block

Set all other fields in the SSVS control block to binary zeros before issuing the
IEFSSREQ macro.

Output Register Information
When control returns to the caller, the general purpose registers contain:

Register Contents

0 Used as a work register by the system

1 Address of the SSOB control block

2 — 13 Same as on entry to call

14 Return address

15 Return code

SSI Function Code 15

42 z/OS V1R4.0 MVS Using the Subsystem Interface

Return Code Information
The SSI places one of the following decimal return codes in register 15. Examine
the return code to determine if the request was processed.

Return Code

(Decimal) Meaning

SSRTOK (0) The Verify Subsystem function call completed.
Check the SSOBRETN field for specific function
information.

SSRTNSUP (4) The subsystem specified in the SSIBSSNM field
does not support the Verify Subsystem function call.

SSRTNTUP (8) The subsystem specified in the SSIBSSNM field
exists, but is not active.

SSRTNOSS (12) The subsystem specified in the SSIBSSNM field is
not defined to MVS.

SSRTDIST (16) The pointer to the SSOB control block or the SSIB
control block is not valid, or the function code
specified in the SSOBFUNC field is greater than the
maximum number of functions supported by the
subsystem specified in the SSIBSSNM field.

SSRTLERR (20) Either the SSIB control block or the SSOB control
block has incorrect lengths or formats.

SSRTNSSI(24) The SSI has not been initialized.

Output Parameters
Output parameters for the function routine are:
v SSOBRETN
v SSVS

SSOBRETN Contents: When control returns to the caller and register 15 contains
a zero, the verify subsystem function places one of the following decimal values in
the SSOBRETN field indicating whether the subsystem name in the SSIBJBID field
is valid:

Value (Decimal) Meaning

SSVSNAM (0) Valid subsystem name

SSVSJBNM (4) The name in the SSIBJBID field is not the name of
a defined subsystem.

SSVS Contents: The SSVS control block contains the following information if a
valid subsystem name was specified:

Field Name Description

SSVSSCTP Pointer to the subsystem’s SSCVT.

SSVSNUM The subsystem affinity index value that you can use in a SSAFF
macro request. See “Maintaining Information About the Callers of
Your Subsystem” on page 175 for more information on the SSAFF
macro.

SSI Function Code 15

Chapter 3. SSI Function Codes Your Program Can Request 43

Request Job ID Call — SSI Function Code 20
The Request Job ID call (SSI function code 20) allows an authorized address space
to establish a job structure. Once the caller receives a job ID, the address space
can use JES services.

Type of Request
Directed SSI call.

Use Information
The following are a few examples of how a program running in an address space
started under the master subsystem can, once it has obtained a job ID, use the
primary subsystem (JES) services:

v Allocate an internal reader to submit jobs that run under JES. See z/OS MVS
Programming: Assembler Services Guide for more information on the internal
reader.

v Allocate a SYSOUT data set (SSI function code 1) so that the program can
retrieve a data set after using SSI function code 1.

While the address space might have been started under the master subsystem
before JES initialization, the Request Job ID SSI call is honored only after JES is
initialized.

Because the address space was not started under JES control, JES does not have
an internal job structure for the address space. Use of SSI function code 20
establishes the necessary structure so that subsequent requests for JES services
for that address space may be performed properly.

Issued to
A JES, typically the primary subsystem. In a JES2 environment, the call may be
made to both the primary JES2 as well as any secondary JES2. It is even possible
to request job IDs from both a primary JES2 and a secondary JES2 at the same
time, though each job ID requires a separate IEFSSREQ call.

Related SSI Codes
Issue the Return Job ID call (SSI function code 21) after the Request Job ID call so
that additional Request Job ID calls can be made.

Related Concepts
You need to understand:

v JES2 can issue ENF (event notification facility) signal 40 during initialization or
orderly termination to communicate the fact that JES2 has initialized, or is
ending.

v JES3 issues ENF signal 40 during initialization or when the JES3 address space
is ending (regardless of orderly shutdown or abnormal termination).

v Issue the Return Job ID call (SSI function code 21) to ″disconnect″ from JES and
return the job ID that was obtained with SSI function code 20.

v When JES2 processes the Request Job ID call from a task started under the
master subsystem, some of the attributes of this task will be defined by the
STCCLASS initialization statement. Specifically, the value defined on the
MSGCLASS parameter determines if the joblog output produced from the SSI
function code 20 job is suppressed. In this example, you must define the
MSGCLASS parameter of the STCCLASS initialization statement so that the
class has a disposition of purge. Note that changing the MSGCLASS value may
produce an undesirable effect on other started tasks in your system.

SSI Function Code 20

44 z/OS V1R4.0 MVS Using the Subsystem Interface

Environment
The caller (issuer of the IEFSSREQ macro) must include the following mapping
macros:
v CVT
v IEFJESCT

Data areas commonly referenced are mapped by the following mapping macros.
IBM recommends you include them in your program:
v IEFSSOBH
v IEFJSSIB
v IEFSSRR

The caller must meet the following requirements:

Minimum Authorization Supervisor state
Dispatchable unit mode Task
AMODE 24-bit or 31-bit
Cross memory mode PASN=HASN=SASN
ASC mode Primary
Interrupt status Enabled for I/O and external interrupts
Locks No locks held
Control Parameters The SSOB, SSIB, and SSRR control blocks can reside in

storage above 16 megabytes.
Recovery The caller should provide an ESTAE-type recovery

environment. See z/OS MVS Programming: Authorized
Assembler Services Guide for more information on an
ESTAE-type recovery environment.

Figure 6 on page 46 shows the environment at the time of the call for SSI function
code 20.

SSI Function Code 20

Chapter 3. SSI Function Codes Your Program Can Request 45

Input Register Information
Before issuing the IEFSSREQ macro, the caller must ensure that the following
general purpose registers contain:

Register Contents

1 Address of a 1-word parameter list that has the high-order bit on
and a pointer to the SSOB control block in the low-order 31 bits.

13 Address of a standard 18-word save area.

Input Parameters
Input parameters for the function routine are:
v SSOB
v SSIB
v SSRR

SSOB Contents: The caller of the function code sets the following fields in the
SSOB control block on input:

Field Name Description

Register 1

'1'b SSOB

SSOB

'SSOB' (SSOBID)

Length
(SSOBLEN)

Function ID
(SSOBFUNC)

SSIB

'SSIB' (SSIBID)

Length (SSIBLEN)

Subsystem name (SSIBSSNM)

SSRR

SSIB (SSOBSSIB)

Function Dependent Area
(SSOBINDV)

Length
(SSRRLEN)

Flag Byte
(SSRRFLG1)

Stop ECB (SSRRSECB) (JES2 only)
STOP
ECB

Version
(SSRRVER)

Input Job Name (SSRJNM)

Figure 6. Environment at Time of Call for SSI Function Code 20

SSI Function Code 20

46 z/OS V1R4.0 MVS Using the Subsystem Interface

SSOBID Identifier ’SSOB’

SSOBLEN Length of the SSOB (SSOBHSIZ) control block

SSOBFUNC SSI function code 20 (SSOBRQST)

SSOBSSIB Address of an SSIB control block

SSOBINDV Address of the function dependent area (SSRR control block)

Set all other fields in the SSOB control block to binary zeros before issuing the
IEFSSREQ macro.

SSIB Contents: The caller of the function code sets the following fields in the SSIB
control block on input:

Field Name Description

SSIBID Identifier ’SSIB’

SSIBLEN Length of the SSIB (SSIBSIZE) control block

SSIBSSNM Subsystem name — name of the subsystem to which this Request
Job ID call is directed.

It is usually the primary JES, or in the case of JES2, a possible
secondary JES.

Set all other fields in the SSIB control block to binary zeros before issuing the
IEFSSREQ macro.

SSRR Contents: The caller of the function code sets the following fields in the
SSRR control block on input:

Field Name Description

SSRRLEN Length of the SSRR (SSRRSIZE) control block

SSRRFLG1 Flag byte

The caller of this function code can set one or more of the following
bits:

v SSRRUASC

If SSRRUASC is set, JES assigns the JES-provided job name to
the job found in the ASCB control block as follows:

1. Started task from the ASCBJBNS field, if the job is running
as a started task, MOUNT, or LOGON.

2. Batch job from the ASCBJBNI field, if the job is running as a
batch job or APPC transaction program.

v SSRRJNMP

If SSRRJNMP is set, JES uses the user-provided jobname in the
SSRRJNM field.

Note: The caller can set either the SSRRUASC bit or the
SSRRJNMP bit, but not both.

v SSRRJOBL

If SSRRJOBL is set, JES explicitly creates a joblog.

v SSRRNJBL

If SSRRNJBL is set, JES does not explicitly create a joblog.

SSI Function Code 20

Chapter 3. SSI Function Codes Your Program Can Request 47

Note: JES explicitly creates a joblog by default when neither the
SSRRJOBL bit nor the SSRRNJBL bit is set. Note that the
caller cannot set both the SSRRJOBL bit and the
SSRRNJBL bit.

SSRRVER Version of mapping for the caller. Set this field to SSRRCVER (an
IBM-defined integer constant within the SSRR control block).

SSRRSECB For JES2 only, contains the pointer to a caller-supplied ECB. When
JES2 posts this ECB, JES2 is ending. In response, issue the
Return Job ID call (SSI function code 21).

Note: Do not rely on this ECB always being posted during the
ending of JES2. JES2 can also end abnormally.

SSRRJNM An optional job name to be used for this job. The name is
left-justified and padded to the right with blank (X’40’) characters.
JES uses this name as the job name if the caller set the
SSRRJNMP bit in the SSRRFLG1 flag byte, as described earlier.

Set all other fields in the SSRR control block to binary zeros before issuing the
IEFSSREQ macro.

Output Register Information
When control returns to the caller, the general purpose registers contain:

Register Contents

0 Used as a work register by the system

1 Address of the SSOB control block

2 — 13 Same as on entry to call

14 Return address

15 Return code

Return Code Information
The SSI places one of the following decimal return codes in register 15. Examine
the return code to determine if the request was processed.

Return Code

(Decimal) Meaning

SSRTOK (0) The Request Job ID call completed. Check the
SSOBRETN field for specific function information.

SSRTNSUP (4) The subsystem specified in the SSIBSSNM field
does not support this function.

SSRTNTUP (8) The subsystem specified in the SSIBSSNM field
exists, but is not active.

SSRTNOSS (12) The subsystem specified in the SSIBSSNM field is
not defined to MVS.

SSRTDIST (16) The pointer to the SSOB control block or the SSIB
control block is not valid, or the function code
specified in the SSOBFUNC field is greater than the
maximum number of functions supported by the
subsystem specified in the SSIBSSNM field.

SSI Function Code 20

48 z/OS V1R4.0 MVS Using the Subsystem Interface

SSRTLERR (20) Either the SSIB control block or the SSOB control
block has invalid lengths or formats.

SSRTNSSI(24) The SSI has not been initialized.

Output Parameters
Output parameters for the function routine are:
v SSIB
v SSOBRETN

SSIB Contents: The SSIB control block contains:
v The JES name (supplied by the user on input)
v The 8-character returned job ID
v The subsystem use value (contained in the SSIBSUSE field-JES3 only)

The subsystem name (SSIBSSNM), returned job ID (SSIBJBID) and subsystem use
value (SSIBSUSE-JES3 only) must be used on subsequent IEFSSREQ calls to the
appropriate JES for subsequent services.

SSOBRETN Contents: When control returns to the caller and register 15 contains
a zero, the SSOBRETN field contains one of the following decimal values:

Value (Decimal) Meaning

SSRROK (0) Successful completion. JES assigned a job ID to
the caller. The job ID is available in the SSIBJBID
field. See “Restrictions” for information on the
processing that takes place after successful
completion has been obtained.

SSRRFAIL (4) The Request Job ID call did not successfully
complete.

This can happen if JES is in the process of ending,
and therefore cannot return job IDs.

This caller cannot make use of subsequent JES
services.

SSRRFREQ (8) The Request Job ID call is already known to this
JES, and may not have a second job ID
established.

SSRRNOEC (16) For JES2 only, an ECB was not supplied through
the SSRRSECB pointer field on the Request Job ID
call.

SSRRPRME (20) There is an error in the SSRR data area. For
example, both the SSRRJOBL bit and the
SSRRNJBL bits may be set.

SSRRPERR (36) The JES processing this call has returned a
program error. This can happen if the JES does not
have enough virtual storage available to create
either the job structure or other control blocks for
the requesting address space.

Restrictions
For both JES2 and JES3, the following restrictions apply to the caller issuing the
Request Job ID call:

SSI Function Code 20

Chapter 3. SSI Function Codes Your Program Can Request 49

v Cannot receive multiple job IDs for different tasks running in the same address
space, because the job ID is associated with an address space.

v Can only make one Request Job ID call, unless a Return Job ID call is done, to
the same JES, in which case another Request Job ID call can be made.

Note: The returned job ID will probably not be the job ID that was previously
received.

v Must use the subsystem name that was used in the Request Job ID in the SSIB
control block (for IEFSSREQ) or in the DALSSREQ text unit (for DYNALLOC) for
any subsequent service request.

This name uniquely identifies the appropriate receiving JES, either primary (JES2
or JES3), or secondary (JES2 only).

For JES2 only, the following restriction applies to the caller issuing the Request Job
ID call:

v Must use different SSIB control blocks to direct more than one Request Job ID
call to multiple (and different) JES2 subsystems simultaneously. This restriction
applies only when more than one JES2 is running (that is, when there are
additional secondary JES2 subsystems).

Considerations When Using the Automatic Restart Manager
If a program registers with the automatic restart manager before requesting a job
ID, the automatic restart manager will not associate the program with JES. If a
system failure occurs, the automatic restart manager can restart the program on
any system in the sysplex, possibly one in a different JES2 multi-access spool
configuration (MAS) or JES3 complex from where the program was running before
the system failure. The program cannot depend on access to jobs or output it
created in the original MAS or complex.

If a program registers with the automatic restart manager after requesting a job ID,
the automatic restart manager will associate the program with JES. If a system
failure occurs, the automatic restart manager can restart the program on any
member in the same MAS or complex. If the program requests job IDs from more
than one JES, the automatic restart manager uses the JES from the first request.

SSI Function Code 20

50 z/OS V1R4.0 MVS Using the Subsystem Interface

Return Job ID Call — SSI Function Code 21
The Return Job ID call (SSI function code 21) allows an authorized address space
to return to JES the job structure that was obtained by invoking the Request Job ID
call (SSI function code 20).

Once the caller returns the job ID, that address space may no longer use JES
services (on behalf of this particular job ID) unless a Request Job ID SSI call is
made again.

Type of Request
Directed SSI call.

Use Information
A program uses this request to give back to JES the job ID that it received from a
previous Request Job ID call (SSI function code 20). The caller issues the Return
Job ID call (SSI function code 21) when the address space determines that it no
longer needs JES services.

Issued to
A JES, typically the primary subsystem. In a JES2 environment, the call may be
made to both the primary JES2 as well as any secondary JES2 subsystems, when
services from either subsystems have been obtained through a previous Request
Job ID call (SSI function code 20).

Related SSI Codes
The Request Job ID call (SSI function code 20) must be used to obtain the job ID
supplied by JES before the caller can request the Return Job ID call.

Related Concepts
You need to understand the Request Job ID call (SSI function code 20).

Environment
The caller (issuer of the IEFSSREQ macro) must include the following mapping
macros:
v CVT
v IEFJESCT

Data areas commonly referenced are mapped by the following mapping macros.
IBM recommends you include them in your program:
v IEFSSOBH
v IEFJSSIB
v IEFSSRR

The caller must meet the following requirements:

Minimum Authorization Supervisor state
Dispatchable unit mode Task
AMODE 24-bit or 31-bit
Cross memory mode PASN=HASN=SASN
ASC mode Primary
Interrupt status Enabled for I/O and external interrupts
Locks No locks held
Control Parameters The SSOB, SSIB, and SSRR control blocks can reside in

storage above 16 megabytes.

SSI Function Code 21

Chapter 3. SSI Function Codes Your Program Can Request 51

Recovery The caller should provide an ESTAE-type recovery
environment. See z/OS MVS Programming: Authorized
Assembler Services Guide for more information on an
ESTAE-type recovery environment.

Figure 7 shows the environment at the time of the call for SSI function code 21.

Input Register Information
Before issuing the IEFSSREQ macro, the caller must ensure that the following
general purpose registers contain:

Register Contents

1 Address of a 1-word parameter list that has the high-order bit on
and a pointer to the SSOB control block in the low-order 31 bits.

13 Address of a standard 18-word save area.

Input Parameters
Input parameters for the function routine are:
v SSOB
v SSIB
v SSRR

SSOB Contents: The caller sets the following fields in the SSOB control block on
input:

Field Name Description

SSOBID Identifier ’SSOB’

SSOBLEN Length of the SSOB (SSOBHSIZ) control block

SSOBFUNC SSI function code 21 (SSOBRTRN)

SSOBSSIB Address of an SSIB control block

Function Dependent Area
(SSOBINDV)

'SSOB' (SSOBID)

Length
(SSOBLEN)

Function ID
(SSOBFUNC)

SSIB (SSOBSSIB)

SSIB

Subsystem Name (SSIBSSNM)

'SSIB' (SSIBID)

Length (SSIBLEN)

SSRR

Version
(SSRRVER)

Length
(SSRRLEN)

Register 1

'1'b SSOB

SSOB

Returned Job ID (SSIBJBID)

Subsystem Use (SSIBSUSE)

Figure 7. Environment at Time of Call for SSI Function Code 21

SSI Function Code 21

52 z/OS V1R4.0 MVS Using the Subsystem Interface

SSOBINDV Address of the function dependent area (SSRR control block)

Set all other fields in the SSOB control block to binary zeros before issuing the
IEFSSREQ macro.

SSIB Contents: The caller sets the following fields in the SSIB control block on
input:

Field Name Description

SSIBID Identifier ’SSIB’

SSIBLEN Length of the SSIB (SSIBSIZE) control block

SSIBSSNM Subsystem name — name of the subsystem to which this Return
Job ID call is directed.

This name identifies either the primary subsystem, or in the case of
JES2, a secondary JES subsystem.

You must use the same subsystem name in this SSIBSSNM field
as you used for the original Request Job ID call (SSI function code
20).

SSIBJBID Returned job ID

You must use the job ID obtained during the previously issued
Request Job ID call (SSI function code 20).

SSIBSUSE (JES3 only) Subsystem use — the SSIBSUSE value that was
returned upon completion of the Request Job ID call (SSI function
code 20).

Set all other fields in the SSIB control block to binary zeros before issuing the
IEFSSREQ macro.

SSRR Contents: The caller sets the following fields in the SSRR control block on
input:

Field Name Description

SSRRLEN Length of the SSRR (SSRRSIZE) control block

SSRRVER Version of mapping for the caller. Set this field to SSRRCVER (an
IBM-defined integer constant within the SSRR control block).

Note: This SSRR control block can be the same SSRR control block that was
provided on the original Request Job ID call (SSI function code 20). All of the
fields except the SSRRLEN field and the SSRRVER field contain binary
zeros.

Output Register Information
When control returns to the caller, the general purpose registers contain:

Register Contents

0 Used as a work register by the system

1 Address of the SSOB control block

2 — 13 Same as on entry to call

14 Return address

15 Return code

SSI Function Code 21

Chapter 3. SSI Function Codes Your Program Can Request 53

Return Code Information
The SSI places the following decimal return codes in register 15. Examine the
return code to determine if the request was processed.

Return Code

(Decimal) Meaning

SSRTOK (0) The Return Job ID call completed. Check the
SSOBRETN field for specific function information.

SSRTNSUP (4) The subsystem specified in the SSIBSSNM field
does not support this function.

SSRTNTUP (8) The subsystem specified in the SSIBSSNM field
exists, but is not active.

SSRTNOSS (12) The subsystem specified in the SSIBSSNM field is
not defined to MVS.

SSRTDIST (16) The pointer to the SSOB control block or the SSIB
control block is not valid, or the function code
specified in the SSOBFUNC field is greater than the
maximum number of functions supported by the
subsystem specified in the SSIBSSNM field.

SSRTLERR (20) Either the SSIB control block or the SSOB control
block has invalid lengths or formats.

SSRTNSSI(24) The SSI has not been initialized.

Output Parameters
Output parameters for the function routine are:
v SSIB
v SSOBRETN

SSIB Contents: The SSIB control block no longer contains a valid job ID on output.
If this address space needs subsequent JES services, issue the Request Job ID
call (SSI function code 20) again.

SSOBRETN Contents: When control returns to the caller and register 15 contains
a zero, the SSOBRETN field contains one of the following decimal values:

Value (Decimal) Meaning

SSRROK (0) Successful completion. The caller’s job ID was
returned to JES. This address space is not
available to JES services unless a subsequent
Request Job ID call (SSI function code 20) obtains
a new job ID.

SSRRFRET (12) The Return Job ID call cannot return a job ID to
JES because a Request Job ID call (SSI function
code 20) was not made.

The job ID is not returned.

SSRRPERR (36) The JES processing this call has returned a
program error. An error can occur if the job ID
returned failed internal JES validation, or if JES
does not have enough virtual storage for a work
area.

SSI Function Code 21

54 z/OS V1R4.0 MVS Using the Subsystem Interface

Request Subsystem Version Information Call — SSI Function Code 54
The Request Subsystem Version Information Call (SSI function code 54) provides a
requesting program the ability to obtain version-specific information about a
particular subsystem.

Type of Request
Directed SSI call.

Use Information
A caller issues SSI function code 54 to obtain the following information about a
particular subsystem:
v Product function modification identifier (FMID)
v Product version number
v Subsystem common name (such as ’JES2’)
v Network node name
v JES system member name
v Whether the subsystem supports the following functions:

– Dynamic output
– Restarting of initiators
– Dynamic allocation of multiple started task (STC) and TSO/E internal readers.
– Client print

Note that 4-digit device numbers are supported.

Issued to
v Master
v JES2/JES3
v User-supplied or vendor-supplied subsystem.

Related SSI Codes
None.

Related Concepts
You need to understand:

v ENF (event notification facility) signal 40

JES2 can issue ENF signal 40 during initialization or orderly termination to
communicate the fact that JES2 has initialized, or is ending.

JES3 issues ENF signal 40 during initialization or when the JES3 address space
is terminating (regardless of orderly shutdown or abnormal termination).

You might need to know when JES is initializing or ending when using SSI
function code 54 to obtain relatively static (information that is not likely to
change between restarts) information about a JES subsystem. If JES ends and is
restarted with a new level, or with a different functional capability, you will need to
reissue this SSI request to obtain information about the new capabilities of JES.
During initialization or orderly termination, JES issues event notification facility
(ENF) signal 40, for which authorized callers can listen. For information about
how programs can listen for ENF signals, see the description of using the
ENFREQ macro in z/OS MVS Programming: Authorized Assembler Services
Guide. Note that the users of ENFREQ must be authorized.

v The caller issues the IEFSSREQ with the SSVI control block used as input. The
information that the subsystem returns will be contained within four sections of
the SSVI control block.

– Fixed header input section

The user provides this information before issuing IEFSSREQ. This information
is explained “Fixed Header Input Section” on page 58.

SSI Function Code 54

Chapter 3. SSI Function Codes Your Program Can Request 55

– Fixed header output section

Information returned by all called subsystems is returned in this section. This
information is explained “Fixed Header Output Section” on page 60.

– Installation variable output section (JES)

As of JES2 SP 4.3 or JES3 SP 5.1.1, installations can supply their own
keywords, or override one or more keywords returned in the system variable
output section. This information is explained “Installation Variable Output
Section” on page 62.

– System variable output section

The called subsystem returns subsystem-specific information in the form of
keyword value specifications. This information is explained “System Variable
Output Section” on page 62.

Environment
The caller (issuer of the IEFSSREQ macro) must include the following mapping
macros:
v CVT
v IEFJESCT

Data areas commonly referenced are mapped by the following mapping macros.
IBM recommends you include them in your program:
v IEFSSOBH
v IEFJSSIB
v IEFSSVI

The caller must meet the following requirements:

Minimum Authorization Problem state, any PSW key
Dispatchable unit mode Task
AMODE 24-bit or 31-bit
Cross memory mode PASN=HASN=SASN
ASC mode Primary
Interrupt status Enabled for I/O and external interrupts
Locks No locks held
Control Parameters The SSOB, SSIB, and SSVI control blocks can reside in

storage above 16 megabytes.
Recovery The caller should provide an ESTAE-type recovery

environment. See z/OS MVS Programming: Assembler
Services Guide for more information on an ESTAE-type
recovery environment.

Figure 8 on page 57 shows the environment at the time of the call for SSI function
code 54.

SSI Function Code 54

56 z/OS V1R4.0 MVS Using the Subsystem Interface

Input Register Information
Before issuing the IEFSSREQ macro, the caller must ensure that the following
general purpose registers contain:

Register Contents

1 Address of a 1-word parameter list that has the high-order bit on
and a pointer to the SSOB control block in the low-order 31 bits.

13 Address of a standard 18-word save area.

Input Parameters
Input parameters for the function routine are:
v SSOB
v SSIB
v SSVI

SSOB Contents: The caller sets the following fields in the SSOB control block on
input:

Field Name Description

SSOBID Identifier ’SSOB’

SSOBLEN Length of the SSOB (SSOBHSIZ) control block

SSOBFUNC SSI function Code 54 (SSOBSSVI)

SSOBSSIB Address of the SSIB control block or zero (if this field is zero, the
life-of-job SSIB is used). See “Subsystem Identification Block
(SSIB)” on page 8 for more information on the life-of-job SSIB.

SSOBINDV Address of the function dependent area (SSVI control block)

Function Dependent Area
(SSOBINDV)

'SSOB' (SSOBID)

Length
(SSOBLEN)

Function ID
(SSOBFUNC)

SSIB (SSOBSSIB) or Zero

SSIB

Subsystem Name (SSIBSSNM)

'SSIB' (SSIBID)

Length (SSIBLEN)

SSVI

Version
(SSVIVER)

Length
(SSVILEN)

Register 1

'1'b SSOB

SSOB

'SSVI' (SSVIID)

Subsystem Use (SSIBSUSE)

Figure 8. Environment at Time of Call for SSI Function Code 54

SSI Function Code 54

Chapter 3. SSI Function Codes Your Program Can Request 57

Set all other fields in the SSOB control block to binary zeros before issuing the
IEFSSREQ macro.

SSIB Contents: If you don’t use the life-of-job SSIB, the caller must provide an
SSIB and set the following fields in the SSIB control block on input:

Field Name Description

SSIBID Identifier ’SSIB’

SSIBLEN Length of the SSIB (SSIBSIZE) control block

SSIBSSNM Subsystem name — name of the subsystem to which this Request
Subsystem Version Information call is directed.

It is either the master subsystem, a JES2 (primary or secondary)
subsystem, a JES3 subsystem, or a user-supplied or
vendor-supplied subsystem.

Set all other fields in the SSIB control block to binary zeros before issuing the
IEFSSREQ macro.

SSVI Contents: The input information in the SSVI control block is contained in the
following area mapped within the SSVI control block:
v Fixed header input section

The caller sets these fields before issuing the IEFSSREQ macro.

Fixed Header Input Section
The fixed header input section contains the information that the caller needs to
provide to the subsystem on input for this Request Subsystem Version Information
call.

Field Name Description

SSVILEN Length of entire area — Set this field to a value that is at least
equal to the value of SSVIMSIZ (a constant contained within the
SSVI control block).

The length includes the fixed header section, plus the system
variable section and the installation variable section. The caller
must ensure that the length specified in the SSVILEN field is large
enough to contain the requested information.

SSVIVER Version of mapping for the caller — Set this field to SSVICVER (an
IBM-defined integer constant within the SSVI control block).

SSVIID Identifier ’SSVI’

Set all other fields in the SSVI control block to binary zeros before issuing the
IEFSSREQ macro.

Output Register Information
When control returns to the caller, the general purpose registers contain:

Register Contents

0 Used as a work register by the system

1 Address of the SSOB control block

2 — 13 Same as on entry to call

14 Return address

SSI Function Code 54

58 z/OS V1R4.0 MVS Using the Subsystem Interface

15 Return code

Return Code Information
The SSI places one of the following return codes in register 15. Examine the return
code to determine if the request was processed.

Return Code

(Decimal) Meaning

SSRTOK (0) Successful completion. The subsystem request
completed. Check field SSOBRETN for specific
function information.

SSRTNSUP (4) The subsystem specified in the SSIBSSNM field
does not support this function.

SSRTNTUP (8) The subsystem specified in the SSIBSSNM field
exists, but is not active.

SSRTNOSS (12) The subsystem specified in the SSIBSSNM field is
not defined to MVS.

SSRTDIST (16) The pointer to the SSOB control block or the SSIB
control block is not valid, or the function code
specified in the SSOBFUNC field is greater than the
maximum number of functions supported by the
subsystem specified in the SSIBSSNM field.

SSRTLERR (20) The SSIB control block or SSOB control block has
invalid lengths or formats.

SSRTNSSI(24) The SSI has not been initialized.

Output Parameters
Output parameters for the function routine are:
v SSOBRETN
v SSVI

SSOBRETN Contents: When control returns to the caller, the SSOBRETN field
contains one of the following decimal values if general purpose register 15 was
zero:

Value (Decimal) Description

SSVIOK (0) Successful completion. The requested information
was returned. See the SSVI control block section
description below for the specific format of the
returned information.

SSVINSTR (8) The requesting application did not provide a storage
area large enough to contain the requested
information. The SSVIRLEN field indicates the total
amount of storage this request requires to complete
successfully.

When you receive this return code, obtain the
appropriate amount of storage for a new IEFSSVI
mapping macro by using the value returned in the
SSVIRLEN field. Then, resubmit the request and

SSI Function Code 54

Chapter 3. SSI Function Codes Your Program Can Request 59

set the SSVILEN field to the new storage size
obtained from the SSVIRLEN field from the
previous request.

SSVIPARM (16) The SSVI data area contains one or more of the
following parameter errors:

v SSOBINDV (in the SSOB control block) did not
contain the address of a valid SSVI control block

v SSVIID did not contain ’SSVI’

v SSVIVER did not specify a valid version of the
SSVI control block

v SSVILEN contained a value that is less than the
value of SSVIMSIZ (an IBM-defined integer
constant within the SSVI control block).

When you receive this return code, fix the problem
and resubmit the request.

SSVIABLG (24) An abend or logical error was encountered within
the called subsystem’s function code routine.

When you receive this return code, search the
problem report databases for a fix to the problem. If
no fix exists, contact the IBM support center.

SSVI Contents: The output information returned in the SSVI control block is
contained in one or more of the following areas mapped within the SSVI control
block:
v Fixed header output section
v System variable output section
v Installation variable output section

Each of these areas is described in order, followed by a description of the format of
the two variable output sections.

Fixed Header Output Section
The fixed header output section contains information that the called subsystem
returns to the requesting program. The called subsystem sets all fields, although
they may be binary zeros.

The following shows how the master and JES subsystems set the contents of the
fixed header output section:

Field Name Description

SSVIRLEN A 2-byte binary field that contains either the length of the storage
used (if the caller’s request was successful), or the length of
storage required (if the request failed because the caller did not
specify enough storage).

To determine whether the SSVIRLEN field contains returned or
required storage, check the return code in SSOBRETN, which
indicates:

Decimal Value Meaning

SSVIOK (0) Request was successful. The SSVIRLEN field
contains the length, in bytes, of the returned data.

SSVINSTR (8) Request failed. The caller did not specify enough

SSI Function Code 54

60 z/OS V1R4.0 MVS Using the Subsystem Interface

storage in the SSVIRLEN field. The SSVIRLEN field
contains the amount of storage, in bytes, the
subsystem requires to return the requested
information.

Note that this field is not set when the SSOBRETN field contains
return code SSVIPARM (16) or SSVIABLG (24).

SSVIRVER A 1-byte binary field that contains the version of the SSVI control
block used by the subsystem. When the caller’s version of the SSVI
control block does not match the version used by the called
subsystem, the subsystem returns information based on the older of
the two versions of the SSVI control block.

SSVIFLEN A 2-byte integer field that contains the length of the fixed header
output section of the SSVI control block the subsystem uses.

SSVIASID A 2-byte binary field that indicates the ASID of the subsystem. A
value of X'FFFF' indicates that the address space abended. This
field contains valid information only if the caller-supplied version in
field SSVIVER is greater than or equal to 2.

SSVIVERS An 8-byte character field that specifies the version of the
subsystem. For example, JES returns: SP 5.1.0, SP 5.2.1, or OS
1.1.0. The master subsystem returns the same value as that
contained in CVTPRODN.

SSVIFMID An 8-byte character field that specifies the FMID of the subsystem
(for example, HBB5510, HJE5510, or HJS5511).

SSVICNAM An 8-byte character field that is left-justified, and padded to the right
with blanks and contains the common name of the subsystem. For
example, in a poly-JES environment, the secondary JES2
subsystem (for example, JESA) returns: ’JES2 ’.

The master subsystem of an MVS system returns: ’MASTER ’.

SSVIPLVL This 1-byte field contains either zero or a value that indicates the
relative subsystem product level. For example, with either JES, the
relative subsystem product level value will increase by at least one
for each subsequent release of the subsystem. For JES2 SP 3.1.3,
the relative subsystem product level value is decimal ’20’ and for
OS/390 Release 1 JES2, the relative subsystem product level value
is decimal ’26’. For more information, see topic “Determining the
JES2 Release Level” in z/OS JES2 Installation Exits. For JES3 SP
3.1.2, the relative subsystem product level value is decimal ’1’ and
for OS/390 Release 1 JES3, the relative subsystem product level
value is decimal ’6’. For more information, see topic “Determining
the JES3 Release Level” in z/OS JES3 Customization.

This field contains valid information only if the caller-supplied
version in field SSVIVER is greater than or equal to 2.

SSVISLVL This 1-byte field indicates the relative service level of the
subsystem and contains either zero or the service level of the
subsystem. For example, the JES relative service level is set to
zero for each new product level and will increase by at least one
each time significant maintenance or function is added within a
release. For additional information concerning this field, see z/OS
JES2 Installation Exits or z/OS JES3 Customization.

SSI Function Code 54

Chapter 3. SSI Function Codes Your Program Can Request 61

This field contain valid information only if the caller-supplied version
in field SSVIVER is greater than or equal to 2.

SSVIUDOF A 4-byte integer field that contains the offset from the start of the
IEFSSVI DSECT, to the start of the installation variable output data
section. The subsystem sets this field to zero if there is no
installation variable output data section.

SSVISDOF A 4-byte integer field that contains the offset from the start of the
SSVI control block, to the start of the system variable output data
section. The subsystem sets this field to zero if there is no system
variable output data section.

System Variable Output Section
The system variable output section contains subsystem-specific information as
keyword values. For more information see “Format of the Variable Output Sections”.

The called subsystem’s function routine can return keyword values to SSI function
code 54 callers in the system variable output section, and, optionally for JES, the
installation variable output section (defined through JES2 Exit 24, or through JES3
via IATUX63). The subsystem’s function routine returns two offsets, SSVIUDOF and
SSVISDOF, in the fixed header output section. Both are offsets from the start of the
SSVI control block to the beginning of their corresponding data area. To indicate
that an output section does not exist, the subsystem’s function routine sets the
offset value to zero. Each data area contains a 2-byte length field, which itself is not
included in the length of the string.

Installation Variable Output Section
As of JES2 SP 4.3 or JES3 SP 5.1.1, installations can use the installation variable
output data section to define their own keywords, or override one or more of the
keyword values returned by the called subsystem in the system variable output
section. The installation variable output data section has the same format as the
system variable output data section. For more details see “Format of the Variable
Output Sections”.

Installations can specify their own keyword values to be returned in the installation
variable output section (through JES2 Exit 24 or JES3 via IATUX63). For more
information about using JES2 Exit 24, see z/OS JES2 Installation Exits. For more
information about using JES3 IATUX63, see z/OS JES3 Customization.

Format of the Variable Output Sections
The following is a description of the subsystem and installation variable output
sections:

Field Name Description

SSVIVLEN A 2-byte signed hexadecimal field that contains the length of the
variable output data string. The length of this field is not included in
the length of the string.

SSVIDAT A variable length character string (its length is set through
SSVIVLEN) that contains a set of keywords and their respective
values. When master (MSTR) or JES is the called subsystem, any,
all or none of the keyword values shown in Table 1 on page 63 are
returned to the SSI code 54 caller.

Procedure of Searching Data Strings: When searching the variable output data
strings, IBM recommends that installations have their SSI code 54 callers search
the installation variable output section, if one exists, before searching the system

SSI Function Code 54

62 z/OS V1R4.0 MVS Using the Subsystem Interface

variable output section. (The callers would use the first instance of a searched for
keyword.) By following this procedure, the installation can add its own values to
those returned by the SSI, and override the system values, without actually
changing the information in the system variable output section.

IBM-Defined Keywords: The following table shows the IBM-defined keywords that
can be returned in the variable-length character string:

Table 1. IBM-Defined Keywords

Keyword Explanation

,JES_NODE=’name’ Specifies the network node name of the JES.

,JES_MEMBERNAME=’name’ Specifies the member name of a particular
JES2 in a multi-JES configuration or the
JES3 main name in a JES3 complex.

,INITIATOR_RESTART=’YES|NO’ Indicates whether the subsystem supports
the restarting of initiators.

,DYNAMIC_OUTPUT=’YES|NO’ Indicates whether the subsystem supports
the dynamic output feature.

,MULTIPLE_STCTSO=’YES|NO’ Indicates whether the subsystem supports
dynamic allocation of multiple started task
(STC) and TSO/E internal readers.

,FOUR_DIGIT_DEVNUMS=’YES|NO’ Indicates whether the subsystem supports
4-digit device numbers.

,AUTO_RESTART_MANAGER=’YES|NO’ Indicates whether the subsystem supports
using the automatic restart manager.

,SAPI=’YES’ Indicates SAPI is supported by this JES.

,SAPI_VOL_SELECT=’NO’ Indicates selection by volume not supported.

,SAPI_PRTY_SELECT=’NO’ Indicates selection by priority not supported.

,SAPI_CHARS=’NO’ Indicates selection by characters not
supported.

,SAPI_IP_SELECT=’NO’ Indicates selection by IP address (Internet
protocol) not supported.

,SAPI_MOD_SELECT=’NO’ Indicates selection by modification id not
supported.

,CLIENT_PRINT=’YES’ Indicates that the JES supports the creation
of a client token in support of client printing.

,WTR_SYSOUT_CLASS=’classes’ Indicates the SYSOUT class for which output
is placed on the JES3 writer queue. (See
note.) For JES2, classes are for non-held
SYSOUT.

,TSO_SYSOUT_CLASS=’classes’ Indicates the SYSOUT class for which output
is placed on the HOLD queue, and is held
for TSO/E. (See note.) For JES2, classes are
held for SYSOUT.

,EXW_SYSOUT_CLASS=’classes’ Indicates the SYSOUT class for which output
is placed on the HOLD queue and is held for
external writers. (See note.) This keyword is
not applicable to JES2.

SSI Function Code 54

Chapter 3. SSI Function Codes Your Program Can Request 63

Table 1. IBM-Defined Keywords (continued)

Keyword Explanation

Note: class can be a value of A through Z or 0 through 9.

No blanks or commas are returned.

For JES3, classes that are defined to have SYSOUT directed to NJE are not returned.

For JES3, classes that are defined to have zero copies created are not returned.

For JES3, classes that are defined to be held for both TSO as well as external writers are
not returned.

The format of the data in the variable output sections is:
,keyword=’value’,keyword=’value’,...,keyword=’value’

Note that each keyword value in the data string is enclosed by a pair of
apostrophes and preceded by a comma. All values must be upper-case.

Restrictions for Variable Output Section: Double-byte character set information is
not currently recognized for variable output section strings.

Specifying Keywords
Installations, or any subsystem that supports the Request Subsystem Version
Information call, must observe the following syntax rules when specifying keywords
in the SSVIDAT field:

v A comma starts the entire string, and a comma must delimit each keyword from
the previous keyword. This syntax allows the caller’s function routine to use an
index-type function when searching for keywords. For example, an index for
″,keyword=’″ provides a valid technique for searching for the presence of the
keyword in a string.

The length of the data string can exceed 256 characters; ensure that the caller’s
parsing function is coded to handle very long data strings.

An apostrophe (’), comma (,), and equal sign (=) are not allowed as part of a
keyword term. For example, the following keyword terms are not allowed:

– KEYWORD’S=’...’

– KEY=WORD=’...’

– KEYWORD,=’...’

v The prefix value USER_ is reserved for installations to pass their own information
in the installation variable output section.

v The ’=’ sign is required.

v Not all keywords need be returned by the subsystem service.

v The combination of an equal sign followed by an apostrophe (=’).. is not allowed
as part of a keyword value.

v Alphabetic characters for a keyword value are assumed to be in upper case
unless otherwise stated.

v If a registered keyword appears in an installation string, then the allowable values
are the same as the system string definition.

v The apostrophes surrounding the value for a keyword are required.

v A null value is indicated by two apostrophes in sequence.

SSI Function Code 54

64 z/OS V1R4.0 MVS Using the Subsystem Interface

v To code an apostrophe within the keyword value, code two apostrophes and
enclose the keyword value within apostrophes.

Additional Recommendations for Specifying Keywords:
v Define yes or no choices as ’YES’ or ’NO’ (not abbreviated).

v Specify any numeric values as unsigned decimal numbers.

v Avoid specifying multiple parameters per keyword. Instead, use a separate
keyword for each parameter, when possible.

v Numeric values must be passed in zoned-decimal format.

v When a keyword is located in a string, the end of the keyword’s value should be
determined prior to performing any comparisons. This ensures that the value that
is searched for is not just a substring for another value.

v A feature or function that may be activated or inactivated while a subsystem is
still active may not be good candidates to include in the string. An exception to
this would be if the subsystem has a mechanism to inform all potential
requesters interested in the feature or function.

Example
The following is a coded example of a program that generates a Request
Subsystem Version Information call.

This program is reentrant, and does not have to run in an authorized library.
SSIREQ54 TITLE ’- ISSUE SUBSYSTEM INFORMATION SSI CALL’
SSIREQ54 AMODE 31
SSIREQ54 RMODE ANY

SPLEVEL SET=4

* FUNCTION: THIS PROGRAM GENERATES A SUBSYSTEM VERSION INFORMATION *
* CALL. IT DISPLAYS THE RETURNED INFORMATION ON THE *
* ON THE OPERATOR CONSOLE. THE SUBSYSTEM CALL IS *
* DIRECTED TO THE MASTER SUBSYSTEM. *
* *
* NAME OF MODULE: SSIREQ54 *
* *
* REGISTER USE: *
* *
* 0 PARM REGISTER *
* 1 PARM REGISTER *
* 2 SSOB *
* 3 SSIB *
* 4 SSVI *
* 5 SSVI SIZE USED *
* 6 SSVI SIZE NEEDED *
* 7 UNUSED *
* 8 ABEND VALUE REGISTER *
* 9 IEFSSREQ/SSVI RETURN CODES *
* 10 UNUSED *
* 11 UNUSED *
* 12 SSIREQ54 BASE REGISTER *
* 13 SAVE AREA CHAIN REGISTER *
* 14 PARM REGISTER / RETURN ADDR *
* 15 PARM REGISTER / COND CODE *
* *
* ATTRIBUTES: PROBLEM STATE, AMODE(31), RMODE(ANY) *
* *
* NOTE: THIS IS A SAMPLE PROGRAM. *
* *

SPACE ,
SSIREQ54 START 0

TITLE ’- EQUATES’

SSI Function Code 54

Chapter 3. SSI Function Codes Your Program Can Request 65

* GENERAL EQUATES *

NOP EQU 0 NO OPERATION
FF EQU X’FF’ ALL BITS ON
EQUHOBON EQU X’80000000’ HIGH ORDER BIT ON
*

* AFTER COMPARE INSTRUCTIONS *

GT EQU 2 A HIGH
LT EQU 4 A LOW
NE EQU 7 A NOT EQUAL B
EQ EQU 8 A EQUAL B
GE EQU 11 A NOT LOW
LE EQU 13 A NOT HIGH
*

* AFTER ARITHMETIC INSTRUCTIONS *

OV EQU 1 OVERFLOW
PLUS EQU 2 PLUS
MINUS EQU 4 MINUS
NZERO EQU 7 NOT ZERO
ZERO EQU 8 ZERO
ZEROS EQU 8 ZERO
NMINUS EQU 11 NOT MINUS
NOV EQU 12 NOT OVERFLOW
NPLUS EQU 13 NOT PLUS
*

* AFTER TEST UNDER MASK INSTRUCTIONS *

ALLON EQU 1 ALL ON
MIXED EQU 4 MIXED
NALLOFF EQU 5 ALLON+MIXED
ALLOFF EQU 8 ALL OFF
NALLON EQU 12 ALLOFF+MIXED
*

* GENERAL PURPOSE REGISTERS *

R0 EQU 0 PARM REGISTER
R1 EQU 1 PARM REGISTER
R2 EQU 2 SSOB
R3 EQU 3 SSIB
R4 EQU 4 SSVI
R5 EQU 5 SSVI SIZE USED
R6 EQU 6 SSVI SIZE NEEDED
R7 EQU 7 UNUSED
R8 EQU 8 ABEND VALUE REGISTER
R9 EQU 9 IEFSSREQ/SSVI RETURN CODES
R10 EQU 10 UNUSED
R11 EQU 11 UNUSED
R12 EQU 12 SSIREQ54 BASE REGISTER
R13 EQU 13 SAVE AREA CHAIN REGISTER
R14 EQU 14 PARM REGISTER / RETURN ADDR
R15 EQU 15 PARM REGISTER / COND CODE
*

* ABEND EQUATES *

SSVIA101 EQU 101 IEFSSREQ MACRO RETURNED R15
* NON-ZERO
SSVIA102 EQU 102 SSOBRETN IS NON-ZERO BUT NOT
* EQUAL TO SSVIERR

TITLE ’- CVT - COMMUNICATIONS VECTOR TABLE’

SSI Function Code 54

66 z/OS V1R4.0 MVS Using the Subsystem Interface

CVT DSECT=YES,LIST=NO
TITLE ’- IEFJESCT - JES CONTROL TABLE’
IEFJESCT TYPE=DSECT
TITLE ’- IEFJSSIB - SUBSYSTEM IDENTIFICATION BLOCK’
IEFJSSIB

TITLE ’- IEFSSOBH - SUBSYSTEM OPTION BLOCK HEADER’
IEFSSOBH

SSOBGN EQU * REQUIRED IF NOT USING IEFJSSOB DEFN
TITLE ’- IEFSSVI - SUBSYSTEM VERSION INFORMATION’
IEFSSVI
TITLE ’- LDA - LOCAL DATA AREA DSECT’

* THE LOCAL DATA AREA IS MAPPED IN THIS DSECT. THIS DATA *
* AREA IS OBTAINED THROUGH A ’STORAGE’ MACRO INSTRUCTION *
* IN THE PROGRAM. *

SPACE ,
LDAAREA DSECT
LDASTART EQU * START OF LOCAL DATA AREA
LDASA DS 9D SAVE AREA FOR LOWER CALLERS
LDAID DS CL8’LDAAREA ’ IDENTIFICATION OF LDA AREA
LDA@SSOB DS F POINTER TO SSOB FOR IEFSSREQ’S USE
LDASSOB DC XL(SSOBHSIZ)’00’ AREA FOR SSOB
LDASSIB DC XL(SSIBSIZE)’00’ AND SSIB
LDAEND EQU * START OF LOCAL DATA AREA
LDASIZE EQU LDAEND-LDASTART LENGTH OF AREA TO GETMAIN

TITLE ’- HOUSEKEEPING REENTRANT ENTRY ROUTINE’

* HOUSEKEEPING AND GENERAL ENTRY ROUTINE (REENTRANT USING *
* LINKAGE-STACK METHOD) *

SSIREQ54 CSECT

BAKR R14,0 SAVE CALLER’S ARS, GPRS, AND
* RETURN ADDRESS ON LINKAGE STACK

LR R12,R15 SET UP PROGRAM BASE REGISTER
USING SSIREQ54,R12 INFORM ASSEMBLER
STORAGE OBTAIN, GET A SAVE AREA THAT’S REENTRANT X

LENGTH=LDASIZE, STANDARD SAVE AREA SIZE X
COND=NO UNCONDITIONAL REQ - NO RC INFO

SPACE ,
LR R13,R1 SAVE STORAGE ADDRESS
USING LDASTART,R13 ADDRESS LOCAL DATA AREA (LDA)
MVC LDAID,=CL8’LDAAREA’ INDICATION OF LOCAL DATA AREA
WTO ’SSIREQ54 EXECUTING V1’, LET OP KNOW X

ROUTCDE=(2,11)
TITLE ’- SSOB/SSVI PROCESSING ROUTINE’

* SET UP SSOB, SSIB, AND SSVI CONTROL BLOCKS. *

SPACE 2

* OBTAIN STORAGE FOR AN SSVI. *

LA R5,SSVIMSIZ MINIMUM SIZE REQUIRED
TRYIT DS 0H

STORAGE OBTAIN, GET A SAVE AREA THAT’S REENTRANT X
LENGTH=(5), STANDARD SAVE AREA SIZE X
COND=NO UNCONDITIONAL REQ - NO RC INFO

LR R4,R1 POINT TO THE SSVI
USING SSVI,R4 ADDRESSABILITY
SPACE 2

* WHEN ISSUING THE IEFSSREQ MACRO, REGISTER 1 MUST POINT TO *
* A CONTROL BLOCK THAT HAS IT’S HIGH-ORDER BIT SET, AND IT’S *
* LOW-ORDER 31 BITS POINTING TO THE SSOB FOR THE SPECIFIC *
* FUNCTION CALL. THEREFORE, SET THIS CONTROL BLOCK *

SSI Function Code 54

Chapter 3. SSI Function Codes Your Program Can Request 67

* (LDA@SSOB) WITH THE HIGH ORDER BIT SET, AND THE LOW-ORDER *
* 31 BITS POINTING TO LDASSOB FIELD. *

SPACE ,
LA R2,LDASSOB POINT TO THE SSOB
USING SSOB,R2 ADDRESSABILITY
O R2,=A(EQUHOBON) SET HIGH ORDER BIT ON
ST R2,LDA@SSOB STORE FOR IEFSSREQ’S USE

* LATER WHEN ISSUING MACRO

* NOW PROCESS THE SSOB (THE SUBSYSTEM OPTION BLOCK). *

SPACE ,
XC SSOBEGIN(SSOBHSIZ),SSOBEGIN CLEAR THE SSOB
MVC SSOBID,=C’SSOBID’ MOVE IDENTIFIER IN
MVC SSOBLEN,=Y(SSOBHSIZ) MOVE SIZE OF THE HEADER IN
LA R1,LDASSIB POINT TO THE SSIB
ST R1,SSOBSSIB SAVE IN SSOB
MVC SSOBFUNC,=Y(SSOBSSVI) MOVE THE FUNCTION ID IN
ST R4,SSOBINDV SAVE SSVI ADDRESS IN SSOB

* DONE WITH THE SSOB - NOW WORK WITH THE SSIB. *
* THE SSIB IS USED TO IDENTIFY THE SPECIFIC SUBSYSTEM THAT *
* THIS REQUEST IS GOING TO. WE ISSUE OUR REQUEST TO THE *
* MASTER SUBSYSTEM, SO WE NEED TO PROVIDE ONE RATHER THAN *
* USE THE LIFE-OF-JOB SSIB WHICH COULD BE USED IF RUNNING *
* UNDER JES2. *

SPACE ,
LA R3,LDASSIB POINT TO THE SSIB
USING SSIB,R3 ADDRESSABILITY
XC SSIBEGIN(SSIBSIZE),SSIBEGIN CLEAR SSIB
MVC SSIBID,=C’SSIBID’ MOVE IDENTIFIER IN
MVC SSIBLEN,=Y(SSIBSIZE) MOVE SIZE OF THE SSIB IN
MVC SSIBSSNM,=C’MSTR’ SHOW MASTER SUBSYSTEM TO BE

* USED TO GET THE INFO

* DONE WITH THE SSIB - NOW WORK WITH THE SSVI. *
* THE SIZE CAN BE VARIABLE, SO WE NEED TO USE DYNAMIC SIZING *
* TECHNIQUES WHEN CLEARING IT. *

SPACE ,
LR R15,R5 SIZE OF THE SSVI
BCTR R15,0 DECREMENT FOR EX
EX R15,CLEAR CLEAR THE SSVI
STH R5,SSVILEN SAVE THE SIZE OF THE SSVI
MVI SSVIVER,SSVICVER MOVE CURRENT VERSION NUMBER IN
MVC SSVIID,=A(SSVICID) SAVE THE IDENTIFIER
TITLE ’- ISSUE IEFSSREQ’ ON IT’’S WAY’

* THE SSOB, SSIB, AND SSVI BLOCKS ARE NOW FILLED IN, AND THE *
* IEFSSREQ MACRO IS READY TO GO. *

SPACE 2

* SET REGISTER ONE SO THAT IT POINTS TO POINTER OF THE SSOB *

SPACE ,
LA R1,LDA@SSOB R1 POINTS TO ADDRESS OF SSOB

* ISSUE THE IEFSSREQ REQUEST TO THE SUBSYSTEM. NOTE WE *
* DON’T HAVE TO MODESET TO SUPERVISOR STATE; PROBLEM STATE *
* IS FINE FOR THIS SUBSYSTEM VERSION INFORMATION CALL. *

SPACE ,
IEFSSREQ , GO GET THE VERSION INFORMATION
SPACE ,

SSI Function Code 54

68 z/OS V1R4.0 MVS Using the Subsystem Interface

* NOW CHECK THE RESULTS - HOW DID WE DO? *

SPACE ,
LA R8,SSVIA101 ASSUME R15 NON-ZERO
LTR R9,R15 DID R15=0? SAVE IN REG9 AS WELL
BC NZERO,ABEND NO...GO TAKE A DUMP
LA R8,SSVIA102 ASSUME SSOBRETN NON-ZERO
ICM R9,B’1111’,SSOBRETN CHECK SSOBRETN
BC ZERO,SHOWUSER SEEMS OK - SHOW WHAT WE GOT
C R9,=A(SSVINSTR) SPECIAL NOT ENOUGH

* STORAGE CASE?
BC NE,ABEND NO, TAKE A DUMP
SPACE ,

* THE IEFSSREQ MACRO WORKED OK, BUT THERE WASN’T ENOUGH *
* STORAGE DEFINED TO RECEIVE ALL OF THE INFORMATION. USING *
* THE INFORMATION RETURNED, LET’S TRY AGAIN. *

SPACE ,
LH R6,SSVIRLEN SAVE THE STORAGE NEEDED
STORAGE RELEASE, FREE MY INFO AREA X

LENGTH=(5), VARIABLY OBTAINED SIZE X
ADDR=(4) HERE’S WHERE IT LIVES

LR R5,R6 NEW SIZE TO TRY AGAIN
B TRYIT GO DO IT TO DO!
DROP R2 SSOB
TITLE ’- EXIT ROUTINES TO MVS (BOTH GOOD AND BAD)’

* THESE ARE GENERAL EXIT ROUTINES BACK TO MVS. *
* ABENDS ARE USED FOR THE ABNORMAL TERMINATIONS. *

SPACE 2
SHOWUSER DS 0H

ICM R6,B’1111’,SSVIUDOF ANY USER DATA?
BC ZERO,SHOWSYS NO, SHOW THE SYSTEM DATA
LA R7,SSVI(R6) R7==>USER VARIABLE DATA AREA
USING SSVIVDAT,R7 ADDRESSABILITY
LH R8,SSVIVLEN GET THE LENGTH
CH R8,=H’125’ GREATER THAN 125 CHARS?
BC LE,SHOWIT1 NO, USE THE REAL LENGTH
MVC SSVIVLEN,=H’125’ ELSE, USE ONLY FIRST 125

SHOWIT1 DS 0H R8=NUMBER OF CHARS TO DISPLAY
WTO TEXT=SSVIVLEN, SHOW TO THE CONSOLE X

ROUTCDE=(11)
B SHOWSYS2 BRANCH AROUND WTO

SHOWSYS DS 0H
WTO ’SSIREQ54 NO USER DATA PRESENT’, LET OP KNOW X

ROUTCDE=(2,11)
SHOWSYS2 DS 0H

ICM R6,B’1111’,SSVISDOF ANY SYSTEM DATA?
BC NZERO,SHOWSYS3 YES, DISPLAY IT
WTO ’SSIREQ54 NO SYSTEM DATA’, LET OP KNOW X

ROUTCDE=(2,11)
B RETURN

SHOWSYS3 DS 0H
LA R7,SSVI(R6) R7==>USER VARIABLE DATA AREA
USING SSVIVDAT,R7 ADDRESSABILITY
LH R8,SSVIVLEN GET THE LENGTH
CH R8,=H’125’ GREATER THAN 125 CHARS?
BC LE,SHOWIT2 NO, USE THE REAL LENGTH
MVC SSVIVLEN,=H’125’ ELSE, USE ONLY FIRST 125

SHOWIT2 DS 0H R8=NUMBER OF CHARS TO DISPLAY
WTO TEXT=SSVIVLEN, SHOW TO THE CONSOLE X

ROUTCDE=(11)
SPACE ,
WTO ’SSIREQ54 RETURNING’, LET OP KNOW X

SSI Function Code 54

Chapter 3. SSI Function Codes Your Program Can Request 69

ROUTCDE=(2,11)
SPACE ,

* GIVE BACK THE STORAGE WE BOUGHT EARLIER. *

SPACE ,
RETURN DS 0H

STORAGE RELEASE, FREE MY INFO AREA X
LENGTH=(5), VARIABLY OBTAINED SIZE X
ADDR=(4) HERE’S WHERE IT LIVES

STORAGE RELEASE, FREE MY REENTRANT SAVE AREA X
LENGTH=LDASIZE, STANDARD SAVE AREA SIZE X
ADDR=(R13) HERE’S WHERE IT LIVES

SPACE ,

* SET PROGRAM RETURN CODE. *

SPACE ,
SLR R15,R15 SET RETURN CODE OF ZERO

* RETURN TO CALLER WITH ORIGINAL STATUS AND REGISTERS. *

SPACE ,
PR RETURN TO CALLER USING STACK, X

RESET REGS 2-14, ADDRESSING MODE, X
ASC MODE, AND RETURN TO CALLER

* ABEND ROUTINES FOLLOW *

SPACE ,
ABEND DS 0H R15 NON-ZERO AFTER IEFSSREQ

WTO ’PROGRAM HAD FATAL ERROR - SEE REGS 8 AND 9’ X
ROUTCDE=(2,11)

SPACE ,
ABEND (R8),DUMP,STEP LET THE USER IN ON THE BAD NEWS
TITLE ’- LOCAL DATA’
SPACE ,

CLEAR XC 0(*-*,R4),0(R4) CLEAR SSVI - OBJ OF EXECUTE
END ,

SSI Function Code 54

70 z/OS V1R4.0 MVS Using the Subsystem Interface

JES Job Information Services— SSI Function Code 71
The JES job information services (SSI function code 71) allows a user-supplied
program to obtain information about jobs in the JES queues. Currently only JES2
supports this SSI function code. Most of the information provided via this SSI is
very dependent on the version and level of JES2 you are currently running and
requires a knowledge of JES2 data structures. Some of the information may be
available in a version-independent format using other interfaces (such as SSI 80).

JES Job Information Services Request Types
The JES job information interface is designed to be a general purpose interface to
obtain access to JES internal data areas. Callers set the field SSJIFREQ in
IAZSSJI to the function they want to have performed. SSJIUSER points to a data
area that contains the data area needed to complete the request.

Type of Request
Directed SSI Call.

Use Information
To use the JES job information services SSI, a caller must first decide the function
they wish to perform. The appropriate parameter list must be obtained and pointed
to by SSJIUSER.

SPOOL Read Service
The SPOOL read service provides access to JES2 SPOOL data records. When
requesting the SPOOL read service, the SSJIUSER field must point to a parameter
area mapped by IAZSPLIO. Any SPOOL record can be read using SPOOL read
including JOB or data set control blocks (mapped by $JCT, $IOT, $PDDB, etc.) or
SYSIN and SYSOUT data records (mapped by $HDB and $LRC). The SPOOL read
service can perform validation of the data read or just read the data at a particular
location. The primary input to this function is the SPOOL address of the record to
be read (MTTR). The MTTR for the JES2 $JCT data area can be obtained using
the extended status SSI (SSI 80 field STJ2SPOL). MTTRs can also be obtained
from other JES2 data areas.

Storage for the SPOOL record read is managed by the SPOOL read service. The
SPOOL read service is composed of 2 function calls (set in SSJIFREQ). SSJISIOM
requests that data be read. SSJISIRS releases any storage associated with the
request. Multiple reads can be issued without a corresponding release request.
Multiple read requests will use the same data buffer to store the data read. If an
application needs to access multiple buffers at the same time, it should use multiple
IAZSPLIO parameter areas (one per buffer).

Issued to
A JES2 subsystem (either primary or secondary). The subsystem does not have to
be associated with the requesting address space.

Related SSI Codes
None.

Related Concepts
None.

Environment
The caller (issuer of the IEFSSREQ macro) must include the following mapping
macros:
v CVT
v IEFJESCT

SSI Function Code 71

Chapter 3. SSI Function Codes Your Program Can Request 71

|

|
|
|
|
|
|

|
|
|
|
|

|
|

|
|
|
|

|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|

|
|
|

|
|

|
|

|
|
|
|
|

Data areas commonly referenced are mapped by the following mapping macros:
v IEFSSOBH
v IEFJSSIB
v IAZSSJI
v IAZSPLIO

The caller must meet the following requirements:

Minimum Authorization Supervisor state, any PSW key
Dispatchable unit mode Task
AMODE 24-bit or 31-bit
Cross memory mode PASN=HASN=SASN
ASC mode Primary
Interrupt status Enabled for I/O and external interrupts
Locks No locks held
Control Parameters The SSOB, SSIB, IAZSSJI, and IAZSPLIO control blocks

can reside in 24- or 31-bit virtual storage
Recovery The caller should provide an ESTAE-type recovery

environment. See z/OS MVS Programming: Assembler
Services Guide for more information on an ESTAE-type
recovery environment

Input Register Information
Before issuing the IEFSSREQ macro, the caller must ensure that the following
general purpose registers contain:

Register Contents

1 Address of a 1-word parameter list that has the high-order bit on
and a pointer to the SSOB control block in the low-order 31 bits.

13 Address of a standard 18-word save area.

Input Parameters
Input parameters for the function routine are:
v SSOB
v SSIB
v IAZSSJI
v IAZSPLIO (SPOOL read service)

SSOB Contents: The caller sets the following fields in the SSOB control block on
input:

Field Name Description

SSOBID Identifier ’SSOB’

SSOBLEN Length of the SSOB (SSOBHSIZ) control block

SSOBFUNC SSI function code 71(SSOBSSJI)

SSOBSSIB Address of the SSIB control block or zero (if this field is zero, the
life-of-job SSIB is used). See “Subsystem Identification Block
(SSIB)” on page 8 for more information on the life-of-job SSIB

SSOBINDV Address of the function-dependent area (IAZSSJI control block)

Set all other fields in the SSOB control block to binary zeros before issuing the
IEFSSREQ macro.

SSI Function Code 71

72 z/OS V1R4.0 MVS Using the Subsystem Interface

|
|
|
|
|

|

|||
||
||
||
||
||
||
||
|
||
|
|
|
|

|
|
|

||

||
|

||

|
|
|
|
|
|

|
|

||

||

||

||

||
|
|

||

|
|

SSIB Contents: If you don’t use the life-of-job SSIB, the caller must provide an
SSIB and set the following fields in the SSIB control block on input:

Field Name Description

SSIBID Identifier ’SSIB’

SSIBLEN Length of the SSIB (SSIBSIZE) control block

SSIBSSNM Subsystem name — name of the subsystem to which this Job
Information Services request is directed

Set all other fields in the SSIB control block to binary zeros before issuing the
IEFSSREQ macro.

IAZSSJI Contents: The caller must set the following fields in the IAZSSJI control
block on input:

Field Name Description

SSJIID Eyecatcher for the control block (set to C’SSJI’)

SSJILEN Length of the IAZSSJI (SSJISIZE) control block

SSJISVRN Input version of the IAZSSST control block. Set to SSJISVR# for
version 1 of the control block

SSJIFREQ Function to be performed on this request. Valid functions and their
related SSJIUSER area are:

Field Value SSJIUSER Description

SSJISIOM IAZSPLIO SPOOL read service, read record from
SPOOL

SSJISIRS IAZSPLIO SPOOL read service, release storage

SSJIUSER Pointer to service specific data area

Set all other fields in the IAZSSJI control block to binary zeros before issuing the
IEFSSREQ macro.

SPOOL read service, IAZSPLIO contents: For the SPOOL read service (function
codes SSJISIOM and SSJISIRS) the caller must set the following fields in the
IAZSPLIO control block on input to a SSJISIOM function call:

Field Name Description

SPIOSSID Eyecatcher of the control block (set to C’SPIO’)

SPIOLEN Length of the IAZSPLIO (SPIOSZE) control block

SPLIOVRN Input version of the IAZSPLIO control block. Set to
SPLIOVR1 for version 1 of the control block. Set to
SPLIOVR# for the current (latest) version

SPIOSPAD SPOOL address of the record to be read. For JES2
the MTTR is placed in the first four bytes and the
next four bytes are set to zero

SPIOCTYP Type of control block being read. If it is not
specified, then no validation of the data area is
done. If you wish to read the signature records for a
track, then this field must be set to SIG. Valid
control blocks are:

SSI Function Code 71

Chapter 3. SSI Function Codes Your Program Can Request 73

|
|

||

||

||

||
|

|
|

|
|

||

||

||

||
|

||
|

||

||
|

||

||

|
|

|
|
|

||

||

||

||
|
|

||
|
|

||
|
|
|
|

Field
Value

Macro Description

CHK $CHK Printer check record

HDB $BUFFER SYSIN/SYSOUT data buffer

IOT $IOT Data set information blocks.
Contains the PDDBs

JCT $JCT JES2 job control table. Main job
control block

NHSB $NHSB NJE headers and trailers

OCT $OCT /* OUTPUT JECL card
descriptors

SIG none Signature record (record 0)

SWBI $SWBIT SYSOUT SWB information

SPIOJNAM Optional input that requests that the job name in
the data area read matches the value specified.
Ignored if SPIOCTYP is not specified or set to
’SIG’.

SPIOJID Optional input that requests that the JOBID in the
data area read matches the value specified. Only
the number portion of the JOBID is verified. Ignored
if SPIOCTYP is not specified.

SPIOJKEY Optional input that requests that the job key in the
data area read matches the value specified.
Ignored if SPIOCTYP is not specified.

SPIODSKY Optional input that requests that the data set key in
the data area read matches the value specified.
Ignored if SPIOCTYP is not specified as ’HDB’.

SPIOSSNM Optional input which, combined with SPIOASID,
requests that SYSOUT data buffers that have not
been written to SPOOL be obtained from the
specified address space. SPIOSSNM is the name
of the system on which the job is currently running.
This must be the same system on which the
request is originating.

SPIOASID Optional input that requests to obtain instorage
SYSOUT buffers that have not been written to
SPOOL. If instorage buffers are needed, then
SPIOJKEY and SPIODSKY must be specified as
well as SPIOASID. If instorage buffers are
requested, then no SPOOL read is attempted.
SPIOSSNM is the MVS system name on which the
job is running. If SPIOASID is not specified, then
SPIOSSNM is not examined.

For JES2, instorage buffers are only obtained when
SPIOCTYP is set to ’HDB ’. Otherwise, the data is
read from SPOOL. SPIOSSNM, or the name of the
system where the SPOOL read request originated,
must be blank.

SSI Function Code 71

74 z/OS V1R4.0 MVS Using the Subsystem Interface

||
|
||

|||

|||

|||
|

|||
|

|||

|||
|

|||

|||
|

||
|
|
|

||
|
|
|

||
|
|

||
|
|

||
|
|
|
|
|
|

||
|
|
|
|
|
|
|
|

|
|
|
|
|

Set all other fields in the IAZSPLIO control block to binary zeros before issuing the
IEFSSREQ macro.

For the SPOOL read service function codes SSJISIRS (release storage), the caller
should not alter any fields in the IAZSPLIO control block returned on the last
SSJISIOM function call.

Output Register Information
When control returns to the caller, the general purpose registers contain:

Register Contents

0 Used as a work register by the system

1 Address of the SSOB control block

2 — 13 Same as on entry to call

14 Return address

15 Return code

Return Code Information
The SSI places one of the following decimal return codes in register 15. Examine
the return code to determine if the request was processed.

Return Code

(Decimal) Meaning

SSRTOK (0) The job information services request completed.
Check the SSOBRETN field for specific function
information.

SSRTNSUP (4) The subsystem specified in the SSIBSSNM field
does not support the job information services
function call.

SSRTNTUP (8) The subsystem specified in the SSIBSSNM field
exists but is not active.

SSRTNOSS (12) The subsystem specified in the SSIBSSNM field is
not defined to MVS.

SSRTDIST (16) The pointer to the SSOB control block or the SSIB
control block is not valid, or the function code
specified in the SSOBFUNC field is greater than the
maximum number of functions supported by the
subsystem specified in the SSIBSSNM field.

SSRTLERR (20) Either the SSIB control block or the SSOB control
block has incorrect lengths or formats.

SSRTNSSI(24) The SSI has not been initialized.

Output Parameters
Output parameters for the function routine are:
v SSOBRETN
v SSJIRETN
v IAZSPLIO (SPOOL read service)

SSOBRETN Contents: When control returns to the caller and register 15 contains
a zero, the extended status function places one of the following decimal values in
the SSOBRETN field:

SSI Function Code 71

Chapter 3. SSI Function Codes Your Program Can Request 75

|
|

|
|
|

|
|

||

||

||

||

||

||

|
|
|

|

||

||
|
|

||
|
|

||
|

||
|

||
|
|
|
|

||
|

||

|
|
|
|
|

|
|
|

Value (Decimal) Meaning

SSJIOK (0) Request successful.

SSJIERVR (4) Request completed with possible errors, see
SSJIRETN for reason code.

SSJIERRU (8) Request cannot be completed due to user error,
see SSJIRETN for reason code.

SSJIERRJ (12) Request cannot be completed, SSJIRETN contains
internal reason code.

SSJIPARM (16) The parameter list, ie, the SSJI extension is an
invalid format - it is not an SSJI, the service version
number is not supported, or the SSJI is not large
enough.

SSJIRETN Contents: In addition to the return code in SSOBRETN, the field
SSJIRETN contains the service related error or more specific information about the
error. SSJIRETN will be set to one of the following decimal values when
SSOBRETN is not zero:

Value (Decimal) Meaning

SSJIUNSF (4) Unsupported subfunction requested

Return codes in SSJIRETN specific to the SPOOL read service: The following
return codes are set if the SPOOL read service was requested and SSOBRETN is
zero:

Value (Decimal) Meaning

SPIOOK (0) Success

SPIONTVF (4) Control block verification failed

SPIOCBIO (8) SPOOL control block I/O error

SPIOCBTK (12) SPOOL control block track address

SPIOCBNG (16) General control block problem

SPIOSTRG (20) Error obtaining 31-bit storage

SPIOSJER (24) Error obtaining 24-bit storage

SPIOILOG (28) A logic error has occurred

SPIONSPL (32) SPIOSTRP not initialized correctly

SPIONBUF (36) Could not locate instorage buffer. Most likely, the
buffer has been written to SPOOL and is no longer
in memory.

SPOOL read service, IAZSPLIO contents: For the SPOOL read service (function
code SSJISIOM) the following is returned in IAZSPLIO:

Field Name Description

SPIOVERO Subsystem version number (currently 1)

SPIOOUTA Address of buffer obtained. This is a pointer directly
to the SPOOLed data area (the $SPID). Normally,
pointers to the data areas point to a prefix area; this
does not.

SSI Function Code 71

76 z/OS V1R4.0 MVS Using the Subsystem Interface

||

||

||
|

||
|

||
|

||
|
|
|

|
|
|
|

||

||

|
|
|

||

||

||

||

||

||

||

||

||

||

||
|
|

|
|

||

||

||
|
|
|

SPIOOLEN Length of the data area returned (not including the
prefix area).

SSI Function Code 71

Chapter 3. SSI Function Codes Your Program Can Request 77

||
|

Notify User Message Service Call — SSI Function Code 75
The Notify User Message Service Call (SSI function code 75) provides a requesting
program the ability to send a message to other users who are either:
v On the same networking node
v On another node.

Type of Request
Directed SSI call.

Use Information
When a caller issues SSI function code 75 to send a message through networking
facilities, the requesting program uses network job entry (NJE) services provided by
MVS/JES. In an MVS environment, the TSO/E user is typically the recipient of
these messages. For example, when a program reaches a particular place in its
processing that the user wants to know about, the caller issues the SSI function
code 75, and a message is sent to the user notifying them of this event. The text of
this message is free-form.

Issued to
v The primary subsystem, either JES2 or JES3
v A secondary JES2 subsystem.

Related SSI Codes
None.

Related Concepts
None.

Environment
The caller (issuer of the IEFSSREQ macro) must include the following mapping
macros:
v CVT
v IEFJESCT

Data areas commonly referenced are mapped by the following mapping macros.
IBM recommends you include them in your program:
v IEFSSOBH
v IEFJSSIB
v IAZSSNU

The caller must meet the following requirements:

Minimum Authorization Supervisor state
Dispatchable unit mode Task
AMODE 24-bit or 31-bit
Cross memory mode PASN=HASN=SASN
ASC mode Primary
Interrupt status Enabled for I/O and external interrupts
Locks No locks held
Control Parameters The SSOB, SSIB, and SSNU control blocks can reside in

storage above 16 megabytes.
Recovery The caller should provide an ESTAE-type recovery

environment. See z/OS MVS Programming: Authorized
Assembler Services Guide for more information on an
ESTAE-type recovery environment.

SSI Function Code 75

78 z/OS V1R4.0 MVS Using the Subsystem Interface

Figure 9 shows the environment at the time of the call for SSI function code 75.

Input Register Information
Before issuing the IEFSSREQ macro, the caller must ensure that the following
general purpose registers contain:

Register Contents

1 Address of a 1-word parameter list that has the high-order bit on
and a pointer to the SSOB control block in the low-order 31 bits.

13 Address of a standard 18-word save area.

Register 1

'1'b SSOB

SSOB

'SSOB' (SSOBID)

Length
(SSOBLEN)

Function ID
(SSOBFUNC)

SSIB

'SSIB' (SSIBID)

Length (SSIBLEN)

Subsystem Name (SSIBSSNM)

'SSNU' (SSNUID)

SSNU

SSIB (SSOBSSIB) or zero

Function Dependent Area
(SSOBINDV)

Subsystem User (SSIBSUSE)

Length
(SSNULEN)

Version
(SSNUVER)

Flag Byte
(SSNUFLG1)

Security Token (SSNUTKNA)

Receiving Node Name
(SSNUODE)

Receiving Userid (SSNUUSER)

Message
Length
(SSNUMLEN)

Message Text (SSNUMSG)

Caller
Supplied
Security
Token

Message
Text

Figure 9. Environment at Time of Call for SSI Function Code 75

SSI Function Code 75

Chapter 3. SSI Function Codes Your Program Can Request 79

Input Parameters
Input parameters for the function routine are:
v SSOB
v SSIB
v SSNU

SSOB Contents: The caller sets the following fields in the SSOB control block on
input:

Field Name Description

SSOBID Identifier ’SSOB’

SSOBLEN Length of the SSOB (SSOBHSIZ) control block

SSOBFUNC SSI function code 75 (SSOBSSNU)

SSOBSSIB Address of the SSIB control block or zero (If this field is zero, the
life-of-job SSIB is used). See “Subsystem Identification Block
(SSIB)” on page 8 for more information on the life-of-job SSIB.

SSOBINDV Address of the function dependent area (SSNU control block)

Set all other fields in the SSOB control block to binary zeros before issuing the
IEFSSREQ macro.

SSIB Contents: If you don’t use the life-of-job SSIB, the caller must provide an
SSIB and set the following fields in the SSIB control block on input:

Field Name Description

SSIBID Identifier ’SSIB’

SSIBLEN Length of the SSIB (SSIBSIZE) control block

SSIBSSNM Subsystem name — name of the subsystem to which this Notify
User Message Service call is directed. It is usually the primary JES,
or in the case of JES2, a possible secondary JES.

If your routine has not been initiated from such a JES, the caller
must issue a Request Job ID call (SSI function code 20) prior to
this Notify User Message Service call. You must use the same
subsystem name in this SSIBSSNM field as you used for the
Request Job ID call.

SSIBSUSE (JES3 only) Subsystem use — the SSIBSUSE value that was
returned upon completion of the Request Job ID call (SSI function
code 20).

The caller must set all other fields in the SSIB control block to binary zeros before
issuing the IEFSSREQ macro.

SSNU Contents: The caller sets the following fields in the SSNU control block on
input:

Field Name Description

SSNUID Identifier ’SSNU’

SSNULEN Length of the SSNU (SSNUSIZE) control block

SSNUVER Version of mapping for the caller — Set this field to SSNUCVER
(an IBM-defined integer constant within the SSNU control block).

SSI Function Code 75

80 z/OS V1R4.0 MVS Using the Subsystem Interface

SSNUFLG1 Flag Byte

v SSNU1MLO — logon message flag

If SSNU1MLO is set, a message is issued only if the user is
logged on.

SSNUTKNA Associated security token of issuing user — this field is optional.

If specified, the SSNUTKNA field must point to a valid security
token, and a WRITER class call is made to validate that the user
has the authority to issue messages that NJE sends.

SSNUNODE Node that messages are sent to — If homenode is desired, use
binary zeros in the SSNUNODE field (Do not use blank (X’40’)
characters).

SSNUUSER Userid to which messages are sent.

SSNUMLEN Length of the message pointed to by the SSNUMSG field. The
message must be no greater than 100 characters.

SSNUMSG Address of the EBCDIC data message that is issued.

Set all other fields in the SSNU control block to binary zeros before issuing the
IEFSSREQ macro.

Output Register Information
When control returns to the caller, the general purpose registers contain:

Register Contents

0 Used as a work register by the system

1 Address of the SSOB control block

2 — 13 Same as on entry to call

14 Return address

15 Return code

Return Code Information
The SSI places one of the following decimal return codes in register 15. Examine
the return code to determine if the request was processed.

Return Code

(Decimal) Meaning

SSRTOK (0) The Notify User Message Service request was
processed. Check the SSOBRETN field for specific
function information.

SSRTNSUP (4) The subsystem specified in the SSIBSSNM field
does not support this function.

SSRTNTUP (8) The subsystem specified in the SSIBSSNM field
exists, but is not active.

SSRTNOSS (12) The subsystem specified in the SSIBSSNM field is
not defined to MVS.

SSRTDIST (16) The pointer to the SSOB control block or the SSIB
control block is not valid, or the function code
specified in the SSOBFUNC field is greater than the

SSI Function Code 75

Chapter 3. SSI Function Codes Your Program Can Request 81

maximum number of functions supported by the
subsystem specified in the SSIBSSNM field.

SSRTLERR (20) Either the SSIB control block or the SSOB control
block has invalid lengths or formats.

SSTRNSSI(24) The SSI has not been initialized.

Output Parameters
Output parameters for the function routine are:
v SSOBRETN
v SSNU

SSOBRETN Contents: When control returns to the caller and register 15 contains
a zero, the SSOBRETN field contains one of the following decimal values:

Value (Decimal) Meaning

SSNUOK (0) The message was issued successfully. The
SSNUERCD field contains a zero (SSNURQOK).

SSNUOKB (4) The message was issued successfully but had a
minor error. See the SSNUERCD field in the SSNU
control block for the specific reason code.

SSNUERR (8) The message was not issued. See the SSNUERCD
field in the SSNU control block for the specific
reason code.

SSNUNEX (12) The functional extension to the SSNU control block
was not found in the SSOB (the SSOBINDV field
was zero) control block.

SSNU Contents: The SSNUERCD (error code) field in the SSNU control block
contains one of the following decimal values if the SSOBRETN field was set to
either SSNUOKB or SSNUERR on return from the IEFSSREQ macro:

Value (Decimal) Meaning

SSNURQOK (0) The request was successful.

SSNUMSGT (4) The request was successful, but the message text
was truncated because it was too long.

SSNUEXC (8) A user exit cancelled the request (JES2 only). In
JES2, exit 42 may have requested the cancellation
of the message.

SSNUNUSR (12) An invalid userid was specified (blanks or zeros).

SSNUINVD (16) An invalid nodename was supplied. The message
was not issued.

SSNUIVID (20) An invalid identifier (SSNUID) was supplied. The
message was not issued.

SSNUIVER (24) An invalid version of the SSNU control block was
supplied. The message was not issued. The value
supplied in the SSNUVER field could not be
processed by JES (either because it was zero, or it
was at a higher level than the receiving JES can
process (SSNUCVER)).

SSI Function Code 75

82 z/OS V1R4.0 MVS Using the Subsystem Interface

SSNUNOST (28) Storage in the processing subsystem was not
available for the function. The message was not
issued.

SSNUNOAU (32) The supplied token failed an NJE WRITER class
authorization call. The caller is not allowed to issue
messages to the specified node. The message was
not issued.

SSNUMSGE (36) The supplied message address or length was not
valid (address specified was zero). The message
was not issued.

SSI Function Code 75

Chapter 3. SSI Function Codes Your Program Can Request 83

SYSOUT Application Program Interface (SAPI) — SSI Function Code 79
The SYSOUT Application Program Interface (SSI function code 79) allows JES to
function as a server for applications needing to process SYSOUT data sets residing
on JES spool. Use of the SAPI SSI call allows a user-supplied program to access
JES SYSOUT data sets independently from the normal JES-provided functions
(such as print or network). Users of this function are application programs operating
in address spaces external to JES. SAPI supports multiple, concurrent requests
from the applications’ address spaces. Each issuer of the IEFSSREQ macro is
referred to as an “application thread.”

Differences Between SSI Function Codes 1 and 79
Although both the SYSOUT Application Program Interface (SSI Function Code 79)
and Process SYSOUT (SSI Function Code 1) allow applications to retrieve
SYSOUT from JES spool using a variety of criteria, there are several important
differences between the two function calls. IBM recommends that applications use
the SAPI, as it is richer in function, as well as having better performance
characteristics than the Process SYSOUT Call.

Some of the differences that SAPI provides are:

v The ability to multi-task data set selection and processing calls from within an
application.

v A richer selection criteria, including the use of wildcard characters for attributes.

v A greater number of SYSOUT data set characteristics returned to the application
than does Process SYSOUT.

v The application has the ability to retrieve information contained in the scheduler
work blocks (SWBs)

v A greater degree of modification ability of selected SYSOUT data sets.

v A count facility that Process SYSOUT does not provide.

Requesting SAPI Processing
The IAZSSS2 (SSS2) mapping macro is used as input to the IEFSSREQ request
for SAPI processing. Fields in the SSS2 macro are differentiated into input, output,
and disposition fields.

v An issuer’s application thread sets input fields upon each IEFSSREQ invocation.

v JES manages output fields.

JES updates the output-defined fields in response to each IEFSSREQ invocation.

v An issuer’s application thread sets the disposition fields on an obtain data set
request to inform JES of the disposition processing to occur for the data set
returned on the prior obtain data set request.

SYSOUT Application Program Interface Request Types
An application thread can make three types of requests with SAPI. Each is
independent of, and mutually exclusive with the others. Field SSS2TYPE indicates
which of these three possible types of requests the application thread is issuing:
v SSS2PUGE - indicates a SAPI PUT/GET request
v SSS2COUN - indicates a SAPI COUNT request
v SSS2BULK - indicates a SAPI BULK MODIFY request

This is the function each serves:
v PUT/GET

Initiates data set selection, and optionally can provide disposition processing
for the data set returned in the previous SAPI PUT/GET call. The SAPI
PUT/GET call is described on “PUT/GET Requests” on page 86.

SSI Function Code 79

84 z/OS V1R4.0 MVS Using the Subsystem Interface

v COUNT

Returns the count of entries that can be scheduled without returning a
particular data set. The SAPI COUNT call is described on “COUNT Requests”
on page 92.

v BULK MODIFY

Modifies selected attributes of one or more data sets. The SAPI COUNT call
is described on “BULK MODIFY Requests” on page 93.

General Programming Considerations — Applicable to All Calls
The following considerations apply to any of the three types of SAPI (SYSOUT
application program interface) calls (PUT/GET, COUNT, and BULK MODIFY):

v Each unique SSOB/SSS2 pair supplied as input on the IEFSSREQ request is
viewed as a separate thread by JES.

You can multi-task these requests within your application’s address space, or
even issue multiple IEFSSREQ requests (supplying different SSOB/SSS2 pairs)
from within a single task in your application’s address space. A task that issues
the original IEFSSREQ can transfer the SSOB/SSS2 control block pair to another
task within your address space for subsequent IEFSSREQ requests. However, if
this is done and the originating task (which JES considers to be the owner of that
specific thread) fails, then JES cleanup occurs for resources associated with that
SSOB/SSS2 pair. If the transferred task attempts to issue another IEFSSREQ
with that same SSOB/SSS2 pair after such a termination occurs, incorrect
processing occurs because JES has disconnected from that SSOB/SSS2 pair.

The field SSS2JEST is the binding value that JES uses to associate a specific
SSOB/SSS2 pair to its thread. The owner of a thread is the TCB that makes the
FIRST request and receives a token in field SSS2JEST. After initially setting
SSS2JEST to X'00's as part of the application thread’s original initialization of the
SSS2, the application thread cannot modify or refer to the SSS2JEST.

v The ‘output section’ of the SSS2 is initialized once by the application thread. The
application thread does so by clearing the entire SSS2 with binary zeroes prior to
initializing any input fields and then issuing the first IEFSSREQ request.
Subsequently, JES manages all the output section fields. An application thread
can only change the contents of this output section after an IEFSSREQ request
has been made with the SSS2CTRL flag set. JES considers such a subsequent
request as a new thread because as a result of the SSS2CTRL bit being set on
the prior IEFSSREQ call, JES disassociates all JES-maintained resources held.

v Destination fields can include a single, maximum 8-character destination or a
destination in the format of node.userid. For the latter case you must have an
NJE-defined destination as the node. The fields are:
– SSS2DEST (Destination - selection)
– SSS2DES2 (New Destination - BULK MODIFY)
– SSS2DDES (New Destination - Disposition Processing)
– SSS2DESR (Returned Destination from a SAPI PUT/GET Call)

v When the selection destination field (SSS2DEST) is in the form of A.B, the A
portion can not be an NJE-defined node other than the node on which the
application is running.

v When the modification destination field (SSS2DES2 or SSS2DDES) is in the form
of A.B, the A portion can be an NJE defined node. In this case, the SYSOUT is
sent to user ‘B’ at node ‘A’.

v Wildcards are valid for the following SSS2 selection fields:
– SSS2JOBN (Job Name)
– SSS2CREA (Owning Userid)
– SSS2PRMO (Process Modes)
– SSS2DEST (Destination)

SSI Function Code 79

Chapter 3. SSI Function Codes Your Program Can Request 85

– SSS2PGMN (User Writer Name)
– SSS2FORM (Form Numbers)

Valid wildcards are * for multiple characters and ? for a single character.

v Output field SSS2RET2 indicates which of the input selection fields were not
used by JES in the selection of work.

v The SSI Function Code 54 call (Request Subsystem Version Information) can be
used to determine the appropriate SYSOUT class to use when modifying the
data set’s SYSOUT class through the SAPI BULK MODIFY call.

v In the terminology of SAPI, the term ‘null’ refers to fields in the SSS2 that are
either X'40's (EBCDIC blanks) in the case of character data, or X'00's (all zeroes)
in the case of binary data.

v JES provides a minimum amount of input validity checking of an input SSS2
before a final call (SSS2CTRL) is processed. This validity checking includes:
– Ensures a valid SSS2 eye catcher is present
– Ensures a valid version number is present
– Ensures a valid request type is present
– Ensures a valid length is present
– Ensures a valid disposition, if applicable, is present

v Data sets available for selection are those that are available at the time the
search for a data set matching the selection criteria begins. Therefore, if a data
set matching the selection criteria is created while a search is in progress, it is
possible that the data set will not be found during that search.

v Data sets available for selection are those that are not currently being processed.

v The use of the token returned from Extended Status (SSI 80) can result in an
EOD return code (SSS2EODS) returned to the user. This can happen when the
SYSOUT available at the time Extended Status was used had been processed
before this call was made (SSS2RENM) or is currently being processed
(SSS2RENS).

PUT/GET Requests
PUT/GET request processing occurs when an application thread issues the
IEFSSREQ macro to initiate data set selection. The input SSOB and SSS2 control
blocks, provided by the application thread, specifies the selection criteria used to
select a data set. The application thread can use a wide variety of selection criteria
to select a SYSOUT data set to be processed.

Once the application thread receives a data set from the JES, you must allocate
(through a dynamic allocation with the data set name that is returned from
SSS2DSN) the data set to process it. During this allocation, dynamic allocation
requires DALBRTKN text unit. JES performs the initialization of this text unit. The
application thread must move the address from field SSS2BTOK into a text unit
pointer field for the JES-provided DALBRTKN text unit. The actual processing of the
SYSOUT data set depends upon your specific application. After your application
thread has completed processing of the data set, it then unallocates the data set
with the text unit of DUNDDNAM specifying the DDNAME of the returned data set
from the original allocation. The allocation/unallocation of the data set must occur
once per returned data set.

The PUT processing occurs when the application thread subsequently issues a
following IEFSSREQ macro to select another data set. You can use fields in the
optional disposition section of the SSS2 to change certain attributes of the
previously obtained data set from the prior IEFSSREQ call.

SSI Function Code 79

86 z/OS V1R4.0 MVS Using the Subsystem Interface

A difference between SAPI and Process SYSOUT (SSI Function Code 1) during
unallocation is that SAPI does not process any of the unallocation text units as
occurs in Process SYSOUT. The SSS2 provides specific disposition fields for JES
to use during the subsequent SAPI PUT/GET call to provide for disposition
processing. From a JES processing point of view, the disposition processing for the
previous data set occurs prior to the processing of the selection of the next data
set, but both are occurring within the same IEFSSREQ call by the application
thread.

You must provide at least SAF UPDATE authority for the JESSPOOL resource class
to the application thread to issue the SAPI PUT/GET call correctly.

If the application does not provide for multi-tasking, it must follow the protocol
below. If the application does provide for multi-tasking, each application thread in
the address space must follow the protocol shown in Figure 10 on page 88.

SSI Function Code 79

Chapter 3. SSI Function Codes Your Program Can Request 87

A

Open the Output
User 'Device'

Initialize C.B.
DCB

Open the SYSOUT
Open DCB-addr

DATA

READ Records
Get DCB=

Put to user 'device'Read Records
unit EOF is
Encountered Get/Put

loop

Close the SYSOUT
Close DCB

Appl.Thread
SAPI PUT/GET call

IEFSSREQ:
SSOB/SSS2

Perform disposition
processing for prior
returned data set if
applicable and
return data set
information for data
set matching thread's
input selection criteria.

APPL Req

Allocate Sysout
DYNALLOC :

DALDSNAM=SSS2DSN
from SAPI

DALSSREQ=SSIBSSNM
DALRTDDN (ret)

DALBRTKN=SSSBTOK

JES APPLICATION THREAD

EOF

D
at

a
S

et
Lo

op

Figure 10. Protocol for the SAPI PUT/GET Call (Part 1 of 2)

SSI Function Code 79

88 z/OS V1R4.0 MVS Using the Subsystem Interface

Programming Considerations for PUT/GET

v The application thread must provide a pointer to an ECB in field SSS2ECBP if
the application thread wants JES to post it when newly created work has
characteristics matching the thread’s selection criteria. This occurs after JES

A

Unallocate Sysout

JES Processing
for unallocation
DYNALLOC request

APPL Req DYNALLOC

DUNDDNAM=DALRTDDN

Update

SSS2

dispose

section

Go Away
IEFSSREQ:

SSS2CTRL is set

What to Do?
Wait for more work?

Alter selection
criteria and
try again?

Do BULK request?
Do COUNT request?

Go away?

CLOSE the Output
Close User 'Device'

APPL Req

Dissociate appl

thread from JES

Figure 10. Protocol for the SAPI PUT/GET Call (Part 2 of 2)

SSI Function Code 79

Chapter 3. SSI Function Codes Your Program Can Request 89

returns SSS2EODS for a PUT/GET request. If an ECB is not supplied, it is the
responsibility of the thread to initiate an IEFSSREQ request.

v For JES3 only, once the application thread begins PUT/GET processing, a
COUNT or BULK MODIFY request can not be initiated prior to receiving an
SSS2EODS response to a PUT/GET request.

v SSS2CDS contains a 1 for the single returned data set in a SAPI GET/PUT call.
If the data set disposition is DELETE, all copies of the data set are deleted.

v Information contained within the SYSOUT data set’s scheduler work blocks
(SWBs) can also be returned to the application thread. Much of the information
contained within the SWB is normally not processed by JES, and therefore much
more information about the data set can be retrieved from the SWB than is
returned in fields of the SSS2. Examples of such information contained within the
SWB are NAME, BUILDING, ADDRESS, and so on.

The application thread needing to retrieve this SWB information, sets either
SSS2FSWB or SSS2FSWT in flag byte SSS2MSC1 when issuing a PUT/GET
request. The setting of SSS2FSWB implies SSS2FSWT processing as well. JES
then provides the application thread the information that can be used when the
application thread invokes the SJF services to retrieve this SWB information.
These services are either SJFREQ REQUEST=RETRIEVE or SWBTUREQ
REQUEST=RETRIEVE.

Note that the use of either settings cause JES to perform additional processing
overhead to satisfy this request. Thus, the application thread should not request
the SWB information unless needed by the application. Examples of this
additional overhead are spool I/O to read the stored SWBTU blocks, SJF
services that JES needs to invoke to prepare the environment, additional
GETMAINs needed to satisfy the request.

If the application thread sets either SSS2FSWT or SSS2FSWB, JES returns in
output field SSS2SWTU a single SWBTU that can be used as input to a
subsequent SWBTUREQ REQUEST=RETRIEVE call made by the application
thread. Mapping macro IEFSJTRP is used when issuing this SWBTUREQ
request. Field SJTRSTUP can be set with the contents of SSS2SWTU when
issuing this request. Set field SJTRSWBN with a binary 1 to indicate a single
SWBTU block is being used for the SWBTUREQ call. The application thread
does not need to explicitly provide storage for the SWBTU block or free it; that is
JES’s responsibility.

If the application thread sets SSS2FSWB, JES returns in output field SSS2SWBT
an output descriptor token that can be used as input to a subsequent SJFREQ
REQUEST=RETRIEVE call made by the application thread. This is in addition to
the SSS2FSWT processing previously described. Mapping macro IEFSJREP is
used when issuing this SJFREQ request. Field SJRETOKN can be set with the
contents of SSS2SWBT when issuing this request. The application thread does
not need to explicitly provide storage for the output descriptor token, or free it;
that is JES’s responsibility.

In the SSS2, reason code field SSS2WRTN contains either a value of SSS2WOK
(0) or SSS2WERR (4). SSS2WOK indicates that JES processing needed for
SWB retrieval was completely successful, and output fields SSS2SWBT and
SSS2SWTU can be used as described above. If SSS2WRTN is set with
SSS2WERR, then an error occured indicating neither SSS2SWTU or
SSS2SWBT fields can be used. If this is the case, reason code field SSS2WRSN
is set with an indicator of the type of error that prevented JES from providing the
SWB information.

Note that this information provided is primarily to be used as diagnostic
information, because the application thread can not affect the JES processing
directly that led to the error. Accordingly, receiving such a SWB processing error

SSI Function Code 79

90 z/OS V1R4.0 MVS Using the Subsystem Interface

does not affect the rest of JES processing. The data set is still able to be
processed by the application thread; only the ability to issue either the
SWBTUREQ or SJFREQ macro services by the application thread is affected
and must not be attempted.

See z/OS MVS Programming: Authorized Assembler Services Reference
SET-WTO for additional information concerning the use of the SJFREQ and
SWBTUREQ services to retrieve the information in the SWB by either, or both, of
the methods described.

v It is the responsibility of the application thread to understand the implications of
disposing a data set as KEEP. Because of the potential to process the data set
again, the application thread must ensure a loop condition does not arise.

v An EOD (SSOBRETN=SSS2EODS) response is a possible return only for
PUT/GET processing. When SAPI returns SSS2EODS to the application thread,
the application thread can do one of the following:

– Wait on its supplied ECB for a post from JES. This post indicates SYSOUT
has just been generated that contains characteristics matching the application
thread’s selection criteria.

The application can then issue another IEFSSREQ to obtain this data set from
the JES. Since multiple applications can be posted from the single piece of
work appearing on the queue, there is no guarantee that once posted, a
thread will not receive an immediate SSS2EODS return again (that is, another
thread received the work).

– Issue another IEFSSREQ request after changing its selection criteria.

– Issue another IEFSSREQ request with the SSS2CTRL flag set indicating the
application thread is terminating.

– Issue a COUNT request.

– Issue a BULK MODIFY request.

v The application must provide DALSSREQ (supplying the JES subsystem name
(for example, JES2 or JESA or JES3)) and a dynamic allocation text unit pointer
that contains the address supplied in SSS2BTOK. In addition, your application
thread must supply a text unit with DALDSNAM that uses the data set name
returned in SSS2DSN.

The subsequent dynamic allocation call is depicted in Figure 11 on page 92.

SSI Function Code 79

Chapter 3. SSI Function Codes Your Program Can Request 91

COUNT Requests
JES counts the number of schedulable elements (OSEs/JOEs) matching the input
selection criteria and returns the count to the application thread in field SSS2CDS.
An application thread does not receive a data set in the SAPI COUNT call. Included
in the information returned are the total byte count, record count, line count, and
page count.

There is no posting of the ECB after a COUNT request has been processed by
JES.

If the application does not provide for multi-tasking, it must follow the protocol
shown in Figure 12 on page 93. If the application does provide for multi-tasking,
each thread in the application address space must follow the protocol shown in
Figure 12 on page 93.

A (RB pointer)
High order bit on

RB (Request Block)
S99TXTPP address of

text pointers

AL2(DALDSNAM,1,44)
CL44'data set name'

AL2(DALSSREQ,1,4)
CL4'subsystem name'

AL2(DALBRTKN,7,...)

A (Text1)

A (Text2)A (Text2)

A(value copied from field SSS2BTOK)

R1

.

.

.

.

.

.

.
high order bit on for last pointer

Figure 11. Control Blocks of DYNALLOC Call for SAPI-Provided Data Set

SSI Function Code 79

92 z/OS V1R4.0 MVS Using the Subsystem Interface

Programming Considerations for COUNT

v Supplying an ECB address in field SSS2ECBP does not result in the posting of
the ECB by JES for a COUNT request.

v A COUNT request can be initiated after the application thread initialization is
complete, immediately following a prior COUNT request, immediately following a
BULK MODIFY request or immediately following receiving an EOD response to a
PUT/GET request.

v After JES returns to the thread after processing the COUNT request, the thread
can do one of the following:

– Issue another IEFSSREQ request, possibly after changing its selection criteria

– Issue another IEFSSREQ request with the SSS2CTRL flag set indicating the
application thread is terminating

– Issue a BULK MODIFY request

– Issue a PUT/GET request

BULK MODIFY Requests
With a BULK MODIFY request, the application thread can select SYSOUT data
set(s) for modifications. Modification of data sets matching the input selection
criteria occurs with the setting of information in flag byte SSS2UFLG.
v SSS2SETC - class update

The class of each data set is changed to the specified class in the
SSS2CLAS field.

v SSS2DELC - delete processing

GO AWAY
IEFSSREQ :

SSS2CTRL is set

Appl. Thread
COUNT

IEFSSREQ :
SSOB/SSS2

Return data set
count for d.s.
matching thread’s
input selection
criteria

Disassociate application
thread from JES

APPL Request

APPL Request

WHAT TO DO???
Alter selection

criteria and
try again?

Do PUT/GET request?
Do BULK request?

Go away?

JES APPLICATION THREAD

Figure 12. Protocol for the SAPI COUNT Call

SSI Function Code 79

Chapter 3. SSI Function Codes Your Program Can Request 93

Each data set is deleted.
v SSS2ROUT - destination update

The destination of each data set is changed to the specified destination in the
SSS2DES2 field.

v SSS2RLSE - release processing

Each data set is moved to the WRITER queue in JES3, and marked non-held
in JES2.

Release processing is applicable only to data sets on the JES3 Output
Service HOLD queue, or for those data sets with dispositions of HOLD or
LEAVE for JES2.

Processing for a BULK MODIFY request occurs for each data set matching the
application thread’s selection criteria. It is important to understand job boundaries
can be crossed.

There is NO posting of the ECB after a BULK MODIFY request has been
processed by JES.

You must provide at least SAF UPDATE authority for the JESSPOOL resource class
to the application thread in order to correctly issue the SAPI BULK MODIFY call.

If the application does not provide for multi-tasking, it must follow the protocol
shown in Figure 13 on page 95. If the application does provide for multi-tasking,
each thread in the application address space must follow the protocol shown in
Figure 13 on page 95.

SSI Function Code 79

94 z/OS V1R4.0 MVS Using the Subsystem Interface

Programming Considerations for BULK MODIFY

v Supplying an ECB address in field SSS2ECBP does not result in the posting of
the ECB by JES for a BULK MODIFY request.

v A BULK MODIFY request can be initiated after the application thread initialization
is complete, immediately following a prior BULK MODIFY request, immediately
following a COUNT request or immediately following receiving an EOD response
to a PUT/GET request.

v After JES returns to the application thread after processing the BULK MODIFY
request, the application thread can do one of the following:

– Issue another IEFSSREQ request, possibly after changing its selection
criteria.

– Issue another IEFSSREQ request with the SSS2CTRL flag set indicating the
application thread is terminating.

– Issue a COUNT request.

– Issue a PUT/GET request.

Use of the Client Token
The contents of the token pointed to by field SSS2CTKN are created by JES. Using
the token reduces the time to find the associated data set. Don’t compare or
otherwise use the tokens except on SAPI or Extended Status calls. Two different
tokens obtained by different means may point to the same data set.

GO AWAY
IEFSSREQ :

SSS2CTRL is set

Appl. Thread
BULK MODIFY

IEFSSREQ :
SSOB/SSS2

Update all data sets
matching thread’s
input selection
criteria per
modification flag
setting

Disassociate application
thread from JES

APPL Request

APPL Request

WHAT TO DO???
Alter selection

criteria and
try again?

Do PUT/GET request?
Do COUNT request?

Go away?

JES APPLICATION THREAD

Figure 13. Protocol for the SAPI BULK MODIFY Call

SSI Function Code 79

Chapter 3. SSI Function Codes Your Program Can Request 95

There are several ways to have obtained a token:

v A previous Extended Status request (see field STSTCTKN)

v As the output of a PUT/GET request (in field SSS2DSTR)

v Dynamic Allocation specified the DALRTCTK text unit.

The content of this SSS2CTKN field is used in addition to any other specified
parameters. This way you can make sure the output data set still has the
characteristics you would expect and have not been modified. If these
characteristics are unimportant to you, specify SSS2CTKN as the only input
parameter.

The CTOKEN maps the JES dependent portion of the client (SYSOUT) token
(mapped by IAZCTKN). The client (SYSOUT) token has a length defined by the
field, CTKNSIZE. The CTOKEN specifically maps the field, CTKNJESD, in
IAZCTKN. The JES dependent portion of the client (SYSOUT) token contains the
information that JES needs to uniquely identify and locate the data set represented
by the client (SYSOUT) token. Also, a bit map from the CTOKEN maps the field,
CTKNBMAP, in IAZCTKN. The bit map provides information as to which parts of the
client (SYSOUT) token are valid for comparison between client (SYSOUT) tokens.

Keeping Processed Data Sets
SSS2RNPR on means that the JES will not return the data set to the application
address space again. The application should treat this as a suggestion (not iron
clad) to the JES. The data set could be seen again by the application if:

v The JES is restarted

v The application is restarted

v The operator or another application changes some characteristic.

v Selection by token is requested.

SSS2RNPT on means that the JES will not return the data set to the application
thread again. A thread begins with the first receipt of a token in field SSS2JEST and
ends when the thread calls JES with the SSS2CTRL flag set. Other threads will be
able to obtain the data set, provided their selection criteria allow it. The application
should treat this as a suggestion (not iron clad) to the JES. The data set could be
seen again by the thread if:

v The JES is restarted

v The operator or another application changes some characteristic

v Selection by token is requested.

This SSS2RNPT may be useful for applications that need to hold on to a data set
or group of data sets until the data is processed by the requester. It allows for
building a ″pipeline″ of work that is directed to the same processing device or user.

Another way to use the function may be in situations where the system needs to
present a list of data sets (from the same job) and keep those data sets on SPOOL
for later final inspection. An end user might want to browse all data sets from a job,
regardless of output characteristic groupings. If only the KEEP disposition is
specified, the same data set may eventually be shown to the application again, thus
creating a never ending loop.

Type of Request
Directed SSI call.

SSI Function Code 79

96 z/OS V1R4.0 MVS Using the Subsystem Interface

Use Information
An application thread uses SSI function code 79 to retrieve and update JES-
managed SYSOUT data sets, allowing the individual application thread to select
SYSOUT from JES and process it in the manner the application thread desires.

Issued to
JES2 or JES3.

Related SSI Codes
54

Related Concepts
You should know how to use:

v Dynamic allocation (DYNALLOC) services to allocate/deallocate the JES-supplied
data set.

v Sequential access method (SAM) to read the allocated SYSOUT data set.

v Other standard MVS services, such as WAIT and POST logic.

Environment
Your application thread must include the following mapping macros:
v CVT
v IEFJESCT

Data areas commonly referenced are mapped by the following mapping macros.
IBM recommends you include them in your program:
v IEFSSOBH
v IEFJSSIB
v IAZSSS2

Your application thread must meet the following requirements:

Minimum Authorization Supervisor state
Dispatchable unit mode Task
AMODE 31-bit
Cross memory mode PASN=HASN=SASN
ASC mode Primary
Interrupt status Enabled for I/O and external interrupts
Locks No locks held
Control Parameters The SSOB and SSS2 control blocks can reside in storage

above 16 megabytes.
Recovery The application thread should provide an ESTAE-type

recovery environment for each task. See z/OS MVS
Programming: Authorized Assembler Services Guide for
more information on an ESTAE-type recovery environment.

Figure 14 on page 98 shows the environment at the time of the call for SSI function
code 79.

SSI Function Code 79

Chapter 3. SSI Function Codes Your Program Can Request 97

Input Register Information
Before issuing the IEFSSREQ macro, your application thread must ensure that the
following general purpose registers contain:

Register Contents

1 Address of a 1-word parameter list that has the high-order bit on
and a pointer to the SSOB control block in the low-order 31 bits.

13 Address of a standard 18-word save area.

Input Parameters
Input parameters for the function routine are:
v SSOB
v SSIB
v SSS2

SSOB Contents: Your application thread sets the following fields in the SSOB
control block on input:

Field Name Description

SSOBID Identifier SSOB

Function Dependent Area
(SSOBINDV)

'SSOB' (SSOBID)

Length
(SSOBLEN)

Function ID
(SSOBFUNC)

SSIB (SSOBSSIB)

SSOBRETN

SSIB

Subsystem Name (SSIBSSNM)

'SSIB' (SSIBID)

Length (SSIBLEN)

SSS2

Eyecatcher

Version
(SSS2VER)

Reason
SSS2REASLength (SSS2LEN)

SSS2UFLG

SSS2SEL2 SSS2SEL3

SSS2DSP1 SSS2CLFT

SSS2SEL4

reserved

reserved

SSS2MSC1 reserved reserved

reserved SSS2SELI

TYPE
SSS2TYPE

ECB

RBA

reserved reserved

Register 1

'1'b SSOB

SSOB

Returned Job ID (SSIBJBID)

Subsystem Use (SSIBSUSE)

S SS S S 2S 2

Figure 14. Environment at Time of Call for SSI Function Code 79

SSI Function Code 79

98 z/OS V1R4.0 MVS Using the Subsystem Interface

SSOBLEN Length of the SSOB (SSOBHSIZ) control block

SSOBFUNC SSI function code 79 (SSOBSOU2)

SSOBSSIB Address of an SSIB control block or zero. (If this field is zero, the
life-of-job SSIB is used.) See “Subsystem Identification Block
(SSIB)” on page 8 for more about the life-of-job SSIB.

SSOBRETN Return code from JES

SSOBINDV Address of the function dependent area (SSS2 control block)

Your application thread must set all other fields in the SSOB control block to binary
zeros before issuing the IEFSSREQ macro.

SSIB Contents: If you don’t use the life-of-job SSIB, your application thread must
provide an SSIB and set the following fields in the SSIB control block on input:

Field Name Description

SSIBID Identifier SSIB

SSIBLEN Length of the SSIB (SSIBSIZE) control block

SSIBSSNM Subsystem name — name of the subsystem to which this SYSOUT
Application Program Interface SSI call is directed. It is usually the
primary JES, or in the case of JES2, possibly a secondary JES.

If your routine has not been initiated from such a JES, your
application thread must issue a Request Job ID call (SSI function
code 20) prior to this SAPI call. You must use the same subsystem
name in this SSIBSSNM field as you used for the Request Job ID
call.

SSIBJBID Job identifier — the job ID that was returned upon completion of the
Request Job ID call (SSI function code 20).

SSIBSUSE (JES3 only) Subsystem use — the SSIBSUSE value that was
returned upon completion of the Request Job ID call (SSI function
code 20).

Your application thread must set all other fields in the SSIB control block to binary
zeros before issuing the IEFSSREQ macro.

SSS2 Contents: An application thread sets the following fields in the SSS2 control
block on input:

Field Name Description

SSS2LEN Input field

The length of the SSS2, set with the value SSS2SIZE

SSS2VER Input field

Set with the current value of SSS2CVER

SSS2EYE Input field

Eye catcher

Set with the character string SSS2

SSS2TYPE Input field

SSI Function Code 79

Chapter 3. SSI Function Codes Your Program Can Request 99

Type of call. Set with either SSS2PUGE, SSS2COUN, or
SSS2BULK below.

SSS2PUGE Request type of PUT/GET.

Find a data set matching the selection criteria.

SSS2COUN Request type of Count.

Find data sets matching the selection criteria and
count the number of data sets and the number of
lines, pages, bytes, and records in those data sets.

SAF checks are not made for the data sets.

Counts are only a snapshot at the time the JES
processes the request.

SSS2BULK Bulk modify request.

Find data sets matching the selection criteria and
dispose of them as indicated in flag SSS2UFLG. No
data sets are made available to the caller.

Input-Only Fields (Optional)
These fields, designated ‘Optional Input-Only Fields’, are used for the application to
convey certain information about the particular call to the JES. Individual fields are
set depending on the particular SAPI call being made at the time. Although these
fields are designated ‘optional’, they must be set properly to effect the desired result
of any particular SAPI request. For example, if the application thread needs to be
posted when available work appears on the queue matching the selection criteria,
then optional input field SSS2ECBP must have been set with the address of the
caller-supplied ECB.

SSS2APPL For application use.

Either leave as binary zeros or supply an EBCDIC value that can
be used for display purposes should you wish to view the SSS2 if
performing diagnostics. An example might be to uniquely identify a
particular thread’s SSS2 in a storage dump.

SSS2APL1 For application use

SSS2ECBP Input field

Address of an ECB to be POSTed when work is available satisfying
the selection criteria. The ECB is POSTed only if a prior PUT/GET
request has returned with a reason code of SSS2EODS. The ECB
is provided by the user.

The caller is allowed to free the memory for this ECB only after
making a call with SSS2CTRL on in SSS2MSC1.

SSS2RBA Input/Output field

Relative byte address (RBA) of first record to be read.

Only valid if bit SSS2CHKP is on.

It is expected that SSS2RBA with the attendant SSS2CHKP bit be
used by applications as a mechanism for interrupting the normal
processing of a group of data sets. The most JES-efficient use of
this approach is to process and delete data sets and to use the
RBA mechanism only when the application wants to defer
processing to a later time.

SSI Function Code 79

100 z/OS V1R4.0 MVS Using the Subsystem Interface

SSS2UFLG Input field

Specifies the modification processing to occur to the selected data
sets.

SSS2UFLG is meaningful only if SSS2BULK is specified in
SSS2TYPE (that is, this is a SAPI BULK MODIFY call).

SSS2SETC Use SSS2CLAS as the new class

SSS2DELC Delete selected data set(s)

SSS2ROUT Use SSS2DEST as the new data set destination

SSS2RLSE Release selected data sets

SSS2SEL1 Input field

Used for selection of new data sets.

You can specify selection from one, two, or three queues. The order
of output with respect to the writer queues and with respect to held
and non-held state is not predictable.

SSS2SHLD Select “HOLD/LEAVE” output (JES2); select “hold
for TSO” output (JES3)

SSS2SXWH Select “hold for XWTR”. In a JES2 environment,
this has the same meaning as SSS2SHLD.

SSS2SHOL Select from the hold queue. Specifying this setting
guarantees that held output is returned regardless
of the JES servicing this request.

SSS2SWTR Select “WRITE/KEEP” output (JES2); select from
the writer queue if JES3. If none of the three bits
are set, then the request is handled as if
SSS2SWTR was specified.

SSS2SAWT Select from all the above

SSS2SCLS Use SSS2CLSL as the class selection list

SSS2SDST Use SSS2DEST as a filter

SSS2SJBN Use SSS2JOBN as a filter

SSS2SDUP Use SSS2JOBN as a filter, but give a reason code
of SSS2DUPJ if duplicate jobs. This setting is
meaningful only if SSS2JOBN has no wildcard
characters. The setting is not used for a bulk modify
(SSS2BULK) or count (SSS2COUN) request.

SSS2SDU2 Give a reason code of SSS2DUPJ if duplicate job.
This setting is only meaningful if SSS2JOBN is also
set.

SSS2SJBI Use SSS2JBIL and SSS2JBIH as filters

SSS2SEL2 Input field

Used for selection of new data sets.

SSS2SPGM Use SSS2PGMN as a filter

SSS2SFRM Use SSS2FORM as a filter

SSS2SCRE Use SSS2CREA as a filter

SSI Function Code 79

Chapter 3. SSI Function Codes Your Program Can Request 101

SSS2SPRM Use SSS2PRMO as a filter

SSS2SIPA Only select output that has an Internet Protocol (IP)
address

SSS2SIPN Only select output that has no IP address. This
setting is mutually exclusive with SSS2SIPA

SSS2SFCB Use SSS2FCB as a filter

SSS2SUCS Use SSS2UCS as a filter

SSS2SEL3 Input field

Used for selection of new data sets.

SSS2SSTC Select Started Tasks (STCs) (see note in
SSS2STYP)

SSS2STSU Select Time Sharing Users (TSUs) (see note in
SSS2STYP)

SSS2SJOB Select batch jobs (JOBs) (see note in SSS2STYP)

SSS2SAPC Select APPC output (see note in SSS2STYP)

SSS2STYP If none of these bits is on, then selection is as if all
of the bits are on.

SSS2SEL4 Input field

Used for selection of new data sets.

SSS2SMOD Use SSS2MOD as a filter

SSS2SFLS Use SSS2FLSH as a filter

SSS2SAGE Data sets selected must be at least as old as the
value in SSS2AGE.

SSS2SLIN Use minimum and maximum line counts specified in
SSS2LMIN and SSS2LMAX as a data set group
filter

SSS2SPAG Use minimum and maximum page counts specified
in SSS2PMIN and SSS2PMAX as a data set group
filter

SSS2SPRI Select output based on priority

SSS2SVOL Select output based on the volume serial list in
SSS2VOL (SSS2NVOL in SSS2RET2 on if the JES
does not support)

SSS2SCHR Use Printer translation tables in SSS2CHAR as a
filter (SSS2NCHR in SSS2RET2 on if the JES does
not support)

SSS2SEL5 Input field

Used for selection of new data sets.

SSS2SCPN Select data set having no CPDS.

SSS2SCTK Select by client token. Mutually exclusive with
SSS2SJBI. You can use this filter as the only input

SSI Function Code 79

102 z/OS V1R4.0 MVS Using the Subsystem Interface

or in conjunction with additional filters. If you use
other filters, they must all match the SYSOUT
attributes.

SSS2SBRO Use SAPI as a ″browse″ facility rather than a
″processing″ facility.

SSS2SODS Use SSS2ODST as a filter.

SSS2MSC1 Input filed

Used for selection of new data sets.

SSS2CTRL

On Processing complete. JES
disassociates all its held resources
on behalf of the calling thread.

Off Normal processing is to occur
depending on SSS2TYPE’s value
(that is, a SAPI PUT/GET, SAPI
COUNT, or SAPI BULK MODIFY
call).

SSS2FSWB Return token for SJFREQ calls in field SSS2SWBT.
This also means that the address of the
SWBTUREQ buffer is returned in field SSS2SWTU

SSS2FSWT Return address of SWBTUREQ buffer in field
SSS2SWTU

SSS2NJEH Return address of NJE data set and job headers if
available (SSS2NJED for data set header;
SSS2NJEJ for job header) (SSS2NNHD in
SSS2RET2 on if the JES does not support)

SSS2JOBN Input field

Used for selection of new data sets. Supports wildcards.

Jobname used for selection (if SSS2SJBN on)

To influence the type of job selected, use the settings in
SSS2SEL3.

SSS2JBIL Input field

Used for selection of new data sets.

Low jobid used for selection (if SSS2SJBI on).

Jobid’s are of the form xxxnnnnn where xxx is JOB, JO, or J, and
nnnnn is one to seven digits. Embedded and trailing blanks are
acceptable. The maximum length of the jobid is eight characters.

To influence the type of job selected, use the settings in
SSS2SEL3.

SSS2JBIH Input field

Used for selection of new data sets.

High jobid used for selection (if SSS2SJBI on). This value must be
null or at least as high as SSS2JBIL.

SSI Function Code 79

Chapter 3. SSI Function Codes Your Program Can Request 103

Jobid’s are of the form xxxnnnnn where xxx is JOB, JO, or J, and
nnnnn is one to seven digits. Embedded and trailing blanks are
acceptable. The maximum length of the jobid is eight characters.

SSS2CREA Input field

Used for selection of new data sets. Supports wildcards.

Creator userid used for selection (if SSS2SCRE on).

SSS2PRMO Input field

One to four values used for selection of new data sets. Supports
wildcards.

One to four PRMODEs used for selection (if SSS2SPRM is on).

This list must contain null entries (X'40's) for any of the elements
not containing a selection parameter.

SSS2DEST Input field

Used for selection of new data sets. Supports wildcards.

In JES2, the userid portion of the destination can contain the
generic characters “*” and “?”. This can match SYSOUT with a
route code that contains a corresponding userid routing. However,
destinations of the format “R*”, “RM*”, “RMT*”, “U*”, and “N*” will
not match SYSOUT with a route code of remote, special local,
local, anylocal, or NJE. Also, wildcards are not supported for
destinations defined by DESTID initialization statements. For more
information, see the topic on Controlling JES2 Processes in z/OS
JES2 Initialization and Tuning Reference.

Destination value used for selection (if SSS2SDST on).

SSS2DES2 Input field

Specifies the new destination of data sets selected for bulk modify
requests.

New destination if SSS2ROUT is on.

SSS2PGMN Input field

Used for selection of new data sets. Supports wildcards.

User writer name used for selection (if SSS2SPGM is on).

SSS2FORM Input field

One to eight values used for selection of new data sets. Supports
wildcards.

One to eight form numbers used for selection (if SSS2SFRM is on).

This list must contain null entries (X'40's) for any of the elements
not containing a selection parameter.

SSS2CLSL Input field

Used for selection of new data sets.

SYSOUT class list used for selection (if SSS2SCLS is on). List is
terminated by X'40'.

SSI Function Code 79

104 z/OS V1R4.0 MVS Using the Subsystem Interface

|
|
|
|
|
|
|
|
|

If multiple classes are listed for the initial PUT/GET request, JES
searches all data sets for the first class specified before searching
for the second class specified, and so on until all classes have
been searched.

For JES3 only, due to searching algorithms, it is suggested that an
application thread, if using multiple SYSOUT classes in SSS2CLSL,
set the value to the single, returned class (from SSS2CLAR) after a
data set is returned from a SAPI PUT/GET call if the application
thread wishes additional data sets of this class to be returned. This
prevents JES3 from excessive queue searches. After the
SSOBRETN value of SSS2EODS has been returned, the
application can then re-supply SSS2CLSL with the original,
multi-class list to continue to search for additional data sets on
subsequent SAPI PUT/GET calls.

SSS2CLAS Input field

Specifies the new class for data sets modified through bulk modify.

New class if SSS2SETC is on.

SSS2LMIN Input field

Used for selection of new data sets.

Minimum line count for data set group (if SSS2SLIN is on)

SSS2LMAX Input field

Used for selection of new data sets.

Maximum line count for data set group (if SSS2SLIN is on)

SSS2PMIN Input field

Used for selection of new data sets.

Minimum page count for data set group (if SSS2SPAG is on)

SSS2PMAX Input field

Used for selection of new data sets.

Maximum page count for data set group (if SSS2SPAG is on)

SSS2FCB Input field

Used for selection of new data sets.

FCB image name used for selection (if SSS2SFCB is on)

SSS2UCS Input field

Used for selection of new data sets.

UCS image name used for selection (if SSS2SUCS is on)

SSS2CHAR Input field

One to four values used to select new data sets (JES3 only).

One to four printer translate tables used for selection (if
SSS2SCHR is on).

This list must contain null entries (X'40's) for any of the elements
not containing a selection parameter.

SSS2MOD Input field

SSI Function Code 79

Chapter 3. SSI Function Codes Your Program Can Request 105

Used for selection of new data sets.

Modify image used for selection (if SSS2SMOD is on)

SSS2FLSH Input field

Used for selection of new data sets.

Flash cartridge ID for selection (if SSS2SFLH is on)

SSS2SECT Input field

Used for selection of new data sets.

Address of the security token or zero. If the application thread
provides the address of the token to be returned, then the
application thread must set the length in the first byte of the area,
and the version in the second byte of the area prior to issuing the
SAPI PUT/GET call.

SSS2AGE Input field

Used for selection of new data sets.

Minimum age of data sets to be selected (if SSS2SAGE is on). The
low order bit represents 1.048576 seconds (that is, the high order
word of the TOD clock).

SSS2VOL Input field

One to four values used to select new data sets (JES2 only).

One to four SPOOL volume serial numbers. Jobs are selected if
and only if the job has output on at least one of the volumes listed
and SSS2SVOL is on.

This list must contain null entries (X'40's) for any of the elements
not containing a selection parameter.

SSS2CTKN Input field

Address of client token used for selection (if SSS2SCTK is on).

Mutually exclusive with SSS2SJBI.

SSS2ODST Input field

Specifies the eight-character origination node name from which the
job was submitted.

Valid only if SSS2SODS in SSS2SEL5 is on.

Input Disposition Fields (Optional): These input disposition fields (optionally
specified by the application thread) are used to determine what is to be done with
the data set that was last returned to the application and that is now being disposed
of. If this is the first SAPI PUT/GET call, then there is no “last” data set; therefore
the following information is ignored.

SSS2DSP1 Input field

Flags describing the disposition for the data set whose name is
currently in SSS2DSN.

Settings in SSS2DSP1 and other dispositions are honored if and
only if the keep bit (SSS2DKPE) is on . In JES3, the absence of the
keep bit implies that the data set will be deleted.

SSI Function Code 79

106 z/OS V1R4.0 MVS Using the Subsystem Interface

|

In JES2, if SSS2DKPE is off and the data set has
OUTDISP=KEEP, the data set will have OUTDISP=LEAVE after
processing. If SSS2DKPE is off and the data set does not have
OUTDISP=KEEP, the data set is deleted regardless of other
disposition settings in this section.

SSS2DKPE Keep the data set

SSS2RHLD Keep the data set and make it non-selectable
(system hold)

SSS2RNPR Keep the data set and leave it selectable, but never
return to this SAPI address space

SSS2RNPR on means that the JES does not return
the data set to the application address space again.
The application must treat this as a “suggestion” to
the JES. The data set could be seen again by the
application if:
v The JES is restarted
v The application is restarted
v Some characteristic is changed by the operator

or another application
v Selection by token is requested.

SSS2DHLD Hold the data set

This bit is mutually exclusive with SSS2DRLS.

SSS2DRLS Release the data set

This bit is mutually exclusive with SSS2DHLD.

SSS2CHKP Use SSS2RBA to checkpoint the data set position.
Next data set returned will have SSS2DSF on.

SSS2DNWR Set writer name to a null value (all X'40's).

SSS2RNPT Leave the data set selectable, but never return to
this sysout API thread again. The data set could be
seen by the thread if:

v The JES is restarted

v Some characteristic is changed by the operator
to another application

v Selection by token is requested.

The following fields (SSS2DCLS, SSS2DFOR, SSS2DPGM, SSS2DDES, and
SSS2CLFT) are used to change a subset of the data set characteristics. These only
have meaning if the data set is kept (SSS2DKPE on in SSS2DSP1).

A null value indicates that no override is desired for SSS2DCLS, SSS2DFOR,
SSS2DPGM, SSS2DDES, and SSS2CLFT.

SSS2DCLS Input field

New class.

SSS2DFOR Input field

New forms.

SSS2DPGM Input field

New user writer name.

SSI Function Code 79

Chapter 3. SSI Function Codes Your Program Can Request 107

|
|
|
|
|

SSS2DDES Input field

New destination.

SSS2CLFT Input field

Number of copies left to process. Values > 255 are treated as 255.

Output Register Information
When control returns to your application, the general purpose registers contain:

Register Contents

0 Used as a work register by the system

1 Address of the SSOB control block

2 — 13 Same as on entry to call

14 Return address

15 Return code

Return Code Information
The SSI places one of the following decimal return codes in register 15. Examine
the return code to determine if the request was processed.

Return Code

(Decimal) Meaning

SSRTOK (0) The SAPI call completed. Check the SSOBRETN
field for specific function information.

SSRTNSUP (4) The subsystem specified in the SSIBSSNM field
does not support this function.

SSRTNTUP (8) The subsystem specified in the SSIBSSNM field
exists, but it is not active.

SSRTNOSS (12) The subsystem specified in the SSIBSSNM field is
not defined to MVS.

SSRTDIST (16) The pointer to the SSOB control block or the SSIB
control block is not valid, or the function code
specified in the SSOBFUNC field is greater than the
maximum number of functions supported by the
subsystem specified in the SSIBSSNM field.

SSRTLERR (20) Either the SSIB control block or the SSOB control
block has incorrect lengths or formats.

SSRTNSSI(24) The SSI has not been initialized.

Output Parameters
Output parameters for the function routine are SSOBRETN and SSS2.

SSOBRETN Contents: When control returns to your application thread and register
15 contains a zero, the SSOBRETN field contains one of the following decimal
values:

Value (Decimal) Meaning

SSS2RTOK (0) Successful completion; for SAPI PUT/GET calls, a
data set was returned whose name is in SSS2DSN

SSS2EODS (4) No more data sets to select

SSI Function Code 79

108 z/OS V1R4.0 MVS Using the Subsystem Interface

See the reason codes defined for SSS2REAS at
“Reason Codes for SSOBRETN being SSS2EODS”
on page 110.

SSS2INVA (8) Invalid search arguments

SSS2UNAV (12) Unable to process now

SSS2DUPJ (16) Duplicate jobnames. (This reason code can occur
only if SSS2SDUP is on.) The duplicate job may or
may not have characteristics matching the SSS2
filter set.

SSS2IDST (20) Invalid destination specified

SSS2TKNM (28) Token map failed.

Application will not be allowed to allocate to data
set and DISP=(,KEEP) will be forced

SSS2LERR (32) Logic error

See the reason codes defined for SSS2REAS at
“Reason Codes for SSOBRETN being SSS2LERR”.

SSS2ICLS (36) SSS2CLAS not A-Z and not 0-9

SSS2BDIS (40) Disposition settings incorrect

See the reason codes defined for SSS2REAS at
“Reason Codes for SSOBRETN being SSS2BDIS”
on page 110.

SSS2CLON (44) Disposition for data set group not uniform (See
SSS2DSH).

DISP=(,KEEP) is forced with no override disposition
information honored

SSS2 Contents: The SSS2 control block contains the following information about
the data set returned from your application’s request:

Reason Codes for SSOBRETN being SSS2LERR: If field SSOBRETN contains
SSS2LERR, then field SSS2REAS will contain one of the following reason codes:

Value (Decimal) Meaning

SSS2RENI (4) SSS2JEST zero, but SSS2DSN not null

SSS2REIP (8) SSS2SIPA and SSS2SIPN are mutually exclusive

SSS2RALO (12) Prior data set still allocated

SSS2RDUP (16) SSS2SDUP on in SSS2SEL1 and wildcards used in
SSS2JOBN

SSS2RJBI (20) SSS2JBIH < SSS2JBIL and SSS2SJBI on

SSS2RCRE (24) SSS2CREA has error and SSS2SCRE on

SSS2RLEN (28) SSS2LEN is less than SSS2SIZE

SSS2RTYP (32) SSS2TYPE is not valid

SSS2RDES (36) SSS2DEST has error and SSS2SDST on

SSS2RJNM (40) SSS2JOBN has error and SSS2SJBN on

SSS2RFRM (44) SSS2FORM has error and SSS2SFRM on

SSI Function Code 79

Chapter 3. SSI Function Codes Your Program Can Request 109

SSS2RPGM (48) SSS2PGMN has error and SSS2SPGM on

SSS2RPRM (52) SSS2PRMO has error and SSS2SPRM on

SSS2RCLS (56) SSS2CLSL has error and SSS2SCLS on

SSS2RFCB (60) SSS2FCB has error and SSS2SFCB on

SSS2RUCS (64) SSS2UCS has error and SSS2SUCS on

SSS2RCHR (68) SSS2CHAR has error and SSS2SCHR on

SSS2RMO (72) SSS2MOD has error and SSS2SMOD on

SSS2RFL (76) SSS2FLSH has error and SSS2SFLS on

SSS2RLPM (80) SSS2LMIN or SSS2LMAX is negative and
SSS2SLIN is on -- or -- SSS2PMIN or SSS2PMAX
is negative and SSS2SPAG is on

SSS2RLPG (84) SSS2LMIN > SSS2LMAX and SSS2SLIN on -- or --
SSS2PMIN > SSS2PMAX and SSS2SPAG on

SSS2RDE2 (88) SSS2DES2 has error and SSS2TYPE is
SSS2BULK and SSS2ROUT on

SSS2RVOL (92) SSS2VOL has error and SSS2SVOL on

SSS2REYE (96) SSS2EYE does not have SSS2

SSS2RCTK (100) SSS2SCTK is on but SSS2CTKN is not specified or
not valid.

SSS2RBRO (104) SSS2SBRO is on but Bulk Modify or Count was
requested.

SSS2RECJ (108) SSS2SCTK and SSS2SJBI are mutually exclusive.

SSS2RODS (112) SSS2ODST has error and SS2SODS on

The remainder of the reason codes up through 180 are reserved for SSS2LERR.

Reason Codes for SSOBRETN being SSS2BDIS: If field SSOBRETN contains
SSS2BDIS, then field SSS2REAS will contain one of the following reason codes:

Value (Decimal) Meaning

SSS2RDCL (184) SSS2DCLS has error

SSS2RDFR (188) SSS2DFOR has error

SSS2RDPG (192) SSS2DPGM has error

SSS2RDDS (196) SSS2DDES has error

SSS2RDHR (200) Both SSS2DHLD and SSS2DRLS specified

Reason codes 204 through 236 are reserved for SSS2BDIS.

Reason Codes for SSOBRETN being SSS2EODS: The following SSS2EODS
reason codes are applicable only when SSS2CTKN is used as a filter:

Value (Decimal) Meaning

SSS2RENM (240) No matching output

SSS2RENS (244) Matching output not selectable

Reason codes 248 through 252 are reserved for SSS2EODS.

SSI Function Code 79

110 z/OS V1R4.0 MVS Using the Subsystem Interface

Output-Only Fields
These fields are returned to the application thread with information managed by the
JES. Once the initial SSS2 control block has been set to X'00's (or after a previous
IEFSSREQ request with SSS2CTRL having been set), the application thread must
not modify the contents of any of these ‘Output-Only’ fields.

SSS2REAS Output field

Reason code associated with SSOBRETN value of SSS2LERR or
SSS2BDIS. See the explanation at “Reason Codes for SSOBRETN
being SSS2LERR” on page 109 and “Reason Codes for
SSOBRETN being SSS2BDIS” on page 110.

SSS2JEST Output field

JES token associated with this SAPI request. A zero value here
implies that this is a new request. A new request implies that the
SSS2DSN is null.

The application, once originally initializing this field to X'00's, must
not modify or subsequently reference this field.

SSS2BTOK Output field

Address of a JES initialized data area (a dynamic allocation text
unit). This value must be copied to a dynamic allocation text unit
pointer by the application thread prior to the dynamic allocation of
the returned data set.

See topic 89 for information concerning programming
considerations related to the use of SSS2BTOK.

SSS2COPY Output field

Total number of copies requested by creator. A data set is returned
through this interface only once no matter how many copies were
requested by the creator.

SSS2CPYG Output field

Copy groups

SSS2JOBR Output field

Jobname of selected job

SSS2JBIR Output field

Job ID of selected job

SSS2OJBI Output field

Original jobid of selected job. (Original id may be different from
current jobid.) (JES3 always returns blanks.)

SSS2CRER Output field

Creator userid of data set selected

SSS2JDVT Output field

JCL definition vector table

SSS2PRMR Output field

PRMODE of data set selected

SSS2DESR Output field

SSI Function Code 79

Chapter 3. SSI Function Codes Your Program Can Request 111

Destination of selected data set

SSS2PGMR Output field

Writer name of selected data set

SSS2FORR Output field

Form number of selected data set

SSS2TJN Output field

Transaction Program Jobname that created this data set

SSS2TJID Output field

Transaction Program Job ID that created this data set

SSS2DSN Output field

Data set name of selected data set. Must be blanks or zeros if
SSS2JEST is zero.

You must not make assumptions regarding the format of the data
set name.

SSS2SEGM Output field

Segment id (zero if data set not segmented)

SSS2WRTN Output field

SWB processing error - return code given:

SSS2WOK (0) Processing successful.

SSS2WERR (4) Processing failed.

Note that reason code field
SSS2WRSN is also set.

SSS2WRSN Output field

SWB processing error - reason code set to non-zero only if
SSS2WRTN is non-zero

SSS2WRSN has the following value: SSSSCCRR where SSSSCCRR is
defined as:

SSSS Reason code from SJF service RR or a qualifier for
a JES service error

CC Return code from SJF service RR

CC is ‘00’ if RR is 4 or 8

RR indicates the SJF service or JES service
4 = JES SPOOL I/O Error
8 = JES Memory management error
12 = SJFREQ REQUEST=SWBTU_MERGE
16 = SJFREQ REQUEST=PUTSWB
20 = SJFREQ REQUEST=JDTEXTRACT
24 = SWBTUREQ REQUEST=RETRIEVE

SSS2CLAR Output field

SYSOUT class of selected data set

SSS2MLRL Output field

SSI Function Code 79

112 z/OS V1R4.0 MVS Using the Subsystem Interface

|

|

Maximum logical record length (LRECL)

SSS2DSID Output field

DSID for the selected data set. The value is derived from the value
specified as the DSID keyword on a DD statement, which is only
used for 3540 Diskette data sets.

SSS2RET1 Output field
SSS2GNVA JES returned an output group name in SSS2OGNM

(JES2 only).
SSS2DSCL Line count, page count, byte count, and record

count (SSS2LNCT, SSS2PGCT, SSS2BYCT, and
SSS2RCCT) are accurate. This bit will not be on if
there was an abnormal termination or the data was
created on a different node.

SSS2DSF First data set in output group
SSS2DSC Output group being continued
SSS2DSL Last data set in output group
SSS2IP An Internet Protocol (IP) destination is available in

the SJF data. See SSS2SWBT and SSS2SWTU.
SSS2BRST BURST=YES specified
SSS2OPTJ OPTCD=J specified

SSS2RET2 Output field
SSS2NCHR Selection using printer translation tables not

supported
SSS2NVOL Selecting output based on a volume serial list not

supported
SSS2NNHD Returning addresses of NJE headers not supported
SSS2NMOD Selecting output based on a modification is not

supported
SSS2NPRI Selecting output in priority order is not supported
SSS2NIPA IP address selection not supported. Turned on if

JES does not support and SSS2SIPA or SSS2SIPN
is on

SSS2RET3 Output field
SSS2RSTC Data set created by started task
SSS2RTSU Data set created by time sharing user
SSS2RJOB Data set created by batch job

SSS2RET4 Output field
SSS2CPDS Data set has page mode data
SSS2SPUN Data set was spun at close
SSS2SDSH All data sets in group must be unallocated

identically.

SSS2RET5 Output field Queue where the data set resides
SSS2RHLV Data set on ″HOLD/LEAVE″ queue (JES2) or ″Hold

for TSO″ queue (JES3)
SSS2RXWH Data set on ″Hold for XWTR″ queue. This will never

be true in a JES2 environment.
SSS2RHOL Data set on one of the held queues.
SSS2RWTR Data set on ″Write/Keep″ queue (JES2) or ″Writer″

queue (JES3).

The following count fields (SSS2LNCT, SSS2PGCT, SSS2BYCT, and SSS2RCCT)
are valid only if SSS2DSCL is on in SSS2RET1.

SSI Function Code 79

Chapter 3. SSI Function Codes Your Program Can Request 113

The fields represent counts for the single data set returned if SSS2TYPE is
SSS2PUGE. The fields represent the total for all data sets selected if SSS2TYPE is
SSS2COUN.

For a SAPI PUT/GET request, these field values are for the single returned data
set. For a SAPI COUNT request, these values represent the sum of all the data
sets that have been selected for the count, not taking individual copies requested of
these data sets into effect.

SSS2LNCT Output field

Line count

For a PUT/GET request, this value is for the single returned data
set. For a COUNT request, this value represents the sum of all the
data sets that have been selected for the count, not taking
individual copies requested of these data sets into effect.

SSS2PGCT Output field

Page count

For a PUT/GET request, this value is for the single returned data
set. For a COUNT request, this value represents the sum of all the
data sets that have been selected for the count, not taking
individual copies requested of these data sets into effect.

SSS2BYCT Output field

Byte count after blank truncation

For a PUT/GET request, this value is for the single returned data
set. For a COUNT request, JES2 does not return this value.
Meanwhile, for JES3 this value represents the sum of all the data
sets that have been selected for the count, not taking individual
copies requested of these data sets into effect.

SSS2RCCT Output field

Spool record count (JES3 only)

For a PUT/GET request, this value is for the single returned data
set. For a COUNT request, this value represents the sum of all the
data sets that have been selected in the count, not taking individual
copies of these data sets into effect.

SSS2PRCD Output field

Procname for the step creating this data set

SSS2STPD Output field

Stepname for the step creating this data set

SSS2DDND Output field

DDNAME for the data set creation

SSS2SWBT Output field

Token used for SJFREQ services. This field is filled in if flag
SSS2FSWB is set.

See topic 89 for programming considerations concerning the use of
the SSS2SWBT field.

SSS2SWTU Output field

SSI Function Code 79

114 z/OS V1R4.0 MVS Using the Subsystem Interface

Address of the SWBTU block. This field is filled in if flag
SSS2FSWT or SSS2FSWB is set.

See topic 89 for programming considerations concerning the use of
the SSS2SWTU field.

SSS2PRIV Input/Output field

Copied to and from SAPPRIV if JES2, COWPRIV if JES3.

SSS2CHR1 Output field

Printer translate table 1

SSS2CHR2 Output field

Printer translate table 2

SSS2CHR3 Output field

Printer translate table 3

SSS2CHR4 Output field

Printer translate table 4

SSS2OGNM Output field

JES2 output group name

The data set returned with a given output group name will not
necessarily continue to have the given output group name if this
request keeps the data set.

This field is valid only if SSS2GNVA is on in SSS2RET1.

SSS2RMOD Output field

Printer copy modify image

SSS2MODT Output field

Printer table reference character

SSS2RFLS Output field

Printer flash cartridge ID

SSS2FLSC Output field

Number of flash copies

SSS2PRIO Output field

Data set priority

SSS2LINC Output field

Lines/page (JES2 only)

SSS2TOD Output field

Date and time of data set availability in TOD format (that is, this
value is the high order word of the TOD clock obtained through a
STCK machine instruction.)

SSS2CDS Output field

Count of work units (JOEs/OSEs) that match the selection criteria.

SSS2NJED Output field

SSI Function Code 79

Chapter 3. SSI Function Codes Your Program Can Request 115

Address of NJE data set header. This field is non-zero if a data set
header is available and the SSS2NJEH flag is on.

SSS2FCBR Output field

Forms control buffer (FCB). Set to asterisks (’****’) if the default
FCB is returned.

SSS2UCSR Output field

Universal character set (UCS). Set to asterisks (’****’) if the default
UCS is returned.

SSS2DSTR Output field

Address of a token that can be used in a subsequent PUTGET call
(SSS2PUGE in SSS2TYPE) to get the same data set. SSS2DSTR
is filled in by JES after the token is constructed. After processing
the data set, JES constructs the data set token in storage controlled
by JES. JES then moves the address of the token into the field,
SSS2DSTR. JES then returns the IAZSSS2 parameter list to the
application. To have the token available for use on a refetch, the
user must save the entire token in storage controlled by the user.
When refetching the data set, SSS2CTKN must point to the entire
saved token and SSS2SCTK bit must be turned on in flag,
SSS2SEL5. Note that the token has a length defined by the field,
CTKNSIZE, in IAZCTKN.

Job-Level Output-Only Fields
Similar to the prior ‘Output-Only’ section, but these fields are applicable to all data
sets from a single job. The information contained within is on a job-level basis, not
on an individual data set-level basis.

SSS2PNAM Output field

Programmer name from the JOB statement

SSS2ROOM Output field

Job level room number

SSS2NOTN Output field

Job notify node

SSS2NOTU Output field

Job notify userid

SSS2ACCT Output field

Address of encoded accounting information

Accounting information is provided in ‘SMF’ format, just as if it is in
type 5 and type 30 SMF records.
AL1(number-of-pairs-that-follow)

followed by 0 or more pairs of the form:
AL1(length),CLlength’string’

A length of 0 indicates an omitted field

Example: Accounting information of (X3600,42,,ANDY):

SSI Function Code 79

116 z/OS V1R4.0 MVS Using the Subsystem Interface

DC AL1(4) Nr of fields
DC AL1(5),CL5’X3600’ field 1
DC AL1(2),CL2’42’ field 2
DC AL1(0) field 3 (null)
DC AL1(4),CL4’ANDY’ field 4

SSS2XEQ Output field

Node where job executed

SSS2ORG Output field

Node where job entered system

SSS2TIME Output field

Time on input processor for the selected job. This is in hundredths
of seconds since midnight.

The time field is local, not UCT/GMT.

SSS2DATE Output field

Date on input processor for the selected job. This is in the form
0cyydddF.

The date field is local, not UCT/GMT.

SSS2SYS Output field

System name of the MVS image where the job output was created.

This field is not available if the SYSOUT came from a network node
or the job was reloaded.

SSS2MBR Output field

Member name of the JES2 image where the job output was
created.

This field is not available if the SYSOUT came from a network node
or the job was reloaded.

SSS2NJEJ Output field

Address of NJE job header. This field is non-zero if the job header
is available and SSS2NJEH flag is on.

SSS2NACT Output field

Network account number.

In JES2, this information is retrieved from the /*NETACCT JECL
statement.

In JES3, this information is retrieved from the //*NETACCT JECL
statement.

SSS2USID Output field

Network account number.

Copy of JMRUSEID for the job being returned. This field should be
used in SMF records associated with the printing of the job.

SSI Function Code 79

Chapter 3. SSI Function Codes Your Program Can Request 117

||

|

|
|

Extended Status Function Call — SSI Function Code 80
The extended status function call (SSI function code 80) allows a user-supplied
program to obtain detailed status information about jobs and SYSOUT in the JES
queue. Both JES2 and JES3 subsystems support job status information.

Extended Status Request Types
The extended status interface is designed to be a general purpose interface to
obtain information from JES. Callers use the STATTYPE field to indicate the type of
data they require. This SSI call can only return job information and SYSOUT status
information that is readily available (that is, no I/O required).

In addition to the type of data being requested, there is a memory management call
type (STATTYPE set to STATMEM). The extended status function SSI manages the
storage needed to return data to the caller. Once the caller completes processing
the returned data, a memory management call is required to free the data areas.

Type of Request
Directed or broadcast SSI call.

Use information
To use the extended status SSI, a caller must first choose the type of data to
request. Job level data with or without SYSOUT level data can be requested. If only
job level data is requested, one output element is created for each job. When
SYSOUT data is requested, one output element is created for each job with output
and one element for each piece of SYSOUT. For example, a job with four pieces of
SYSOUT that matched all selection criteria would return one job level data element
and four SYSOUT level data elements.

Next, the caller must decide what filters to use to select which data elements are
returned. A filter is an attribute that a job or SYSOUT must possess to be returned
by the interface. Filters are either at the job or SYSOUT level. Use of filters is not
dependent on the type of data being requested. If only job level data is being
requested and a SYSOUT filter is specified, then only jobs that have SYSOUT
which passes the SYSOUT filter will be returned. Only one job level data element
per matching job is returned.

A typical filter has some value associated with it, such as JOBNAME with value of
TOMW. However, some filters do not have values associated with them, such as
jobs that are held. If no filters are applied, the the extended status function call
returns information on all jobs or all SYSOUT. Because the number of jobs and
SYSOUT in the system can be great, it is recommended that if information on all
jobs or SYSOUT is not required, a filter be specified to limit the returned data.

All returned data will match all filters requested. If you need to limit (filter) the data
based on two different values (such as a JOBNAME of PAULAK or ZOOT), you can
make multiple calls to the extended status SSI before processing the results. None
of the output areas set by the subsystem will be cleared until the memory
management call is made. This allows a second SSI call to append its results to the
results of the first call. For example, if all jobs that are owned by userid PAULAK or
ZOOT are needed, use the following series of calls:
1. Request job data with an owner filter of PAULAK
2. Request job data with an owner filter of ZOOT
3. Process all data elements returned
4. Issue memory management request to return data areas.

SSI Function Code 80

118 z/OS V1R4.0 MVS Using the Subsystem Interface

This is preferable to requesting information on all jobs and then selecting for
processing only those data elements for jobs owned by PAULAK or ZOOT.

When information is obtained through multiple calls, it is the caller’s responsibility to
eliminate duplicate data. The extended status SSI makes no checks on subsequent
calls to ensure information for the same job is not returned multiple times. In a
JES2 environment, if the SSI is broadcast to all subsystems, JES2 suppresses
replies from secondary JES2s in the same MAS as a subsystem that has already
replied.

For JES2 subsystems, information returned through this SSI is obtained from a
local copy of JES2’s work queues. As such, it might not reflect the current state of a
job or SYSOUT element. The information can be as much as a few seconds old. If
your application must have the most current job status, then use some other
interface (such as operator commands) to obtain the information.

For JES3 subsystems, information returned through this SSI is obtained from work
queues on the JES3 global. As such, the information reflects the current status of
the job or SYSOUT at the time of the request.

The order of information returned is dependent on the filters requested and the
subsystem responding. The only ordering that can be assumed is that as
subsystems add data to the output area, that information is added to the beginning
of the output area. For example, in a series of two calls, the results from the second
call will appear on the chain of output areas before the results of the first call.
Similarly, if the call is broadcast to all subsystems, the output of the primary
subsystem appears after the output of any secondary subsystems.

The status request does not provide a way to freeze the job and data set status in
the system. Other SAPI applications, JES writers, networking writers, and operators
may change the state of any job or data set received in the status response. In
general, the bigger the time lag between the status request and the use of the
information, the bigger the chance that either some other function may have
processed the data set or that a new output may have arrived.

Issued to
v A JES2 subsystem (either primary or secondary) or a JES3 subsystem for a

directed request.
v The master subsystem for a broadcast request.

Related SSI Codes
None.

Related Concepts
None.

Environment
The caller (issuer of the IEFSSREQ macro) must include the following mapping
macros:
v CVT
v IEFJESCT

Data areas commonly referenced are mapped by the following mapping macros.
IBM recommends you include them in your program:
v IEFSSOBH
v IEFJSSIB
v IAZSSST

SSI Function Code 80

Chapter 3. SSI Function Codes Your Program Can Request 119

|
|
|
|
|
|

The caller must meet the following requirements:

Minimum Authorization Supervisor State, any PSW key
Dispatchable unit mode Task
AMODE 24-bit or 31-bit
Cross memory mode PASN=HASN=SASN
ASC mode Primary
Interrupt status Enabled for I/O and external interrupts
Locks No locks held
Control Parameters The SSOB, SSIB, and IAZSSST control blocks can reside

above or below 16 megabytes in virtual storage.
Recovery The caller should provide an ESTAE-type recovery

environment. See z/OS MVS Programming: Assembler
Services Guide for more information on an ESTAE-type
recovery environment.

Figure 15 shows the environment at the time of the call for SSI function code 80.

Input Register Information
Before issuing the IEFSSREQ macro, the caller must ensure that the following
general purpose registers contain:

Register Contents

1 Address of a 1-word parameter list that has the high-order bit on
and a pointer to the SSOB control block in the low-order 31 bits.

13 Address of a standard 18-word save area

Function Dependent Area
(SSOBINDV)

'SSOB' (SSOBID)

Length
(SSOBLEN)

Function ID
(SSOBFUNC)

SSIB (SSOBSSIB)

SSIB

Subsystem Name (SSIBSSNM)

'SSIB' (SSIBID)

Length (SSIBLEN)

SSST

Eyecatcher
(STATEYE)

Length
(STATLEN)

(STATEYE)

Output Version
(STATVER0)

Type
(STATTYPE) Reserved

Version
(STATVER)

Reason Code
(STATREAS)

Reason Code 2
(STATREA2)

Register 1

SSOB

.

.

.

Figure 15. Environment at Time of Call for SSI Function Code 80

SSI Function Code 80

120 z/OS V1R4.0 MVS Using the Subsystem Interface

Input Parameters
Input parameters for the function routine are:
v SSOB
v SSIB
v IAZSSST

SSOB Contents: The caller sets the following fields in the SSOB control block on
input:

Field Name Description

SSOBID Identifier ‘SSOB’

SSOBLEN Length of the SSOB (SSOBHSIZ) control block

SSOBFUNC SSI function code 80 (SSOBESTA)

SSOBSSIB Address of an SSIB control block or zero (if this field is zero, the
life-of-job SSIB is used). See “Subsystem Identification Block
(SSIB)” on page 8 for more information on the life-of-job SSIB.

SSOBINDV Address of the function-dependent area (IAZSSST control block).

Set all other fields in the SSOB control block to binary zeros before issuing the
IEFSSREQ macro.

SSIB Contents: If you do not use the life-of-job SSIB, the caller must provide an
SSIB and set the following fields in the SSIB control block on input:

Field Name Description

SSIBID Identifier ‘SSIB’

SSIBLEN Length of the SSIB (SSIBSIZE) control block

SSIBSSNM Subsystem name — name of the subsystem to which this extended
status function call is directed (or MSTR if it is to be broadcast).

Set all other fields in the SSIB control block to binary zeros before issuing the
IEFSSREQ macro.

IAZSSST Contents: The caller must set the following fields in the IAZSSST control
block on input:

Field Name Description

STATLEN Length of the IAZSSST (STATSIZE) control block. For STATVER,
set to STATV010 or STATV020, a length of at least STATSIZ1 or
STATSIZ2 is required. For STATVER set to STATV030 or greater, a
length of at least STATSIZ3 is required. STATSIZE is always
equated to the largest length of the IAZSSST control block and in
general should be used to obtain storage for the IAZSSST and to
set STATLEN.

STATEYE Eyecatcher for the control block (set to C'STAT')

STATVER Input version of the IAZSSST control block (Set to STATV010 for
the initial version of the control block, STATV020 for OS/390
Version 2 Release 4, STATV030 for OS/390 Version 2 Release 5.)

STATTYPE Function to be performed on this request. Valid functions are:

Field Value Description

SSI Function Code 80

Chapter 3. SSI Function Codes Your Program Can Request 121

STATTERS Requests obtaining basic data for jobs. The data
returned on this call does not require large amounts
of system overhead.

STATOUTT Requests obtaining basic data for SYSOUT
(including job level information). Data returned on
this call does not require large amounts of system
overhead. This request type is only supported by
JES2 subsystems. STATVER must be set to at
least STATV030 for this request to be valid.

STATMEM Return memory from a previous request. After one
or more requests for data, the memory obtained
must be returned using this function.

The caller can also set the following fields in the IAZSSST control block on input to
limit (or select) the jobs for which data will be returned:

Field Name Description

STATSEL1 Flag byte which describes the filters to use to select jobs. Each bit
corresponds to a filter field which must match any job returned.

Bit Name Description

STATSCLS Apply job class filter in STATCLSL.

STATSDST Apply default destination filter in STATDEST.

STATSJBN Apply job name filter in STATJOBN.

STATSJBI Apply job ID filters in STATJBIL and STATJBIH.
STATSJBI cannot be specified with STATSCTK.

STATSOJI Apply original job ID filter in STATOJBI. Not
supported in JES3.

STATSOWN Apply current owner filter in STATOWNR.

STATSSEC Apply current SECLABEL filter in STATSECL.

STATSEL2 Flag byte which describes the type of jobs for which
data is requested. All type bits set on (STATSTYP)
or all bits set off select all job types.

Bit Name Description

STATSSTC Started tasks are selected.

STATSTSU Time sharing users are selected.

STATSJOB Batch jobs are selected.

STATSAPC APPC initiators are selected.
Because APPC initiators are also
started tasks they are also returned
if STATSSTC is specified. Use only
STATSAPC to select only APPC
initiators.

STATSEL3 Flag byte which describes the filters to use to select
jobs. Each bit either corresponds to a filter field
which must match any job returned or is a criteria
for selecting jobs to return.

Bit Name Description

SSI Function Code 80

122 z/OS V1R4.0 MVS Using the Subsystem Interface

STATSPRI Apply JES job priority filter in
STATPRIO.

STATSVOL Apply SPOOL volume filters in
STATVOL (this is valid only when
requesting data from a JES2
subsystem).

STATSPHZ Apply current job phase in
STATPHAZ.

STATSHLD Select jobs that are currently held.
Setting both STATSHLD and
STATSNHL on is the same as
setting both bits off.

STATSNHL Select jobs that are not currently
held. Setting both STATSNHL and
STATSHLD on is the same as
setting both bits off.

STATSSYS Only jobs active on the system
listed in STATSYS are returned.

STATSMEM Only jobs active on the JES
member listed in STATMEMB are
returned. (Only supported by
JES2.)

STATSPOS Include jobs queue position
information for jobs awaiting
execution on WLM service class
queues. Setting this bit causes the
fields STSCQPOS, STSCQNUM,
and STSCQACT to be set if
available. Calculating queue
position will increase the processing
overhead associated with a
request. This filter is only supported
by JES2 subsystems. STATVER
must be set to STATV020 or
greater to use this filter.

STATSEL4 Flag byte which describes the filters to use to select
jobs. Each bit corresponds to a filter field which
must match any job returned.

Bit Name Description

STATSORG Apply origin node filter in
STATORGN. Only supported by
JES2.

STATSXEQ Apply execution node filter in
STATXEQN. Only supported by
JES2.

STATSSRV Apply WLM service class filter in
STATSRVC. When filtering by
service class and not filtering by job
number (STATSJBI) nor job phase
(STATSPHZ), only jobs on the

SSI Function Code 80

Chapter 3. SSI Function Codes Your Program Can Request 123

|
|

|
|

service class queue specified in
STATSRVC are returned. When
filtering on job number or job
phase, any job assigned the service
class specified in STATSRVC is
returned (even if the job is not in a
WLM-managed job class). Service
classes are only available if the job
has completed conversion
processing and has not completed
execution processing. This filter is
only supported by JES2
subsystems. STATVER must be set
to STATV020 or greater to use this
filter.

STATSSEN Apply scheduling environment filter
in STATSENV.

STATSSL1 Flag byte which describes the SYSOUT filters to
use to select data to return. Each bit corresponds to
a filter field which must match for data to be
returned. If JOB data is requested (STATTERS)
then only jobs with SYSOUT that match the
specified filters are returned. If SYSOUT data is
requested, then data for SYSOUT that matches
these filters is returned along with the
corresponding job level data. These filters are only
supported by JES2 subsystems. STATVER must be
set to STATV030 or greater to use these filters.

Bit Name Description

STATSCTK Use the SYSOUT token in
STATCTKN as a filter. SYSOUT
tokens can be obtained from
dynamic allocation or field
STSTCTKN from a previous
extended status request.
STATSCTK and STATSJBI cannot
both be specified.

STATSSOW Apply the SYSOUT owner filter in
STATSCRE.

STATSSDS Apply the SYSOUT destination filter
in STATSDES.

STATSSCL Apply the SYSOUT class filter in
STATSCLA.

STATSSWR Apply the SYSOUT external writer
filter in STATSWTR.

STATSSHL Select SYSOUT that is currently
held. This is the type of hold
created by specifying HOLD=YES
on the DD statement or
OUTDISP=HOLD on the output
card. Setting both STATSSHL and

SSI Function Code 80

124 z/OS V1R4.0 MVS Using the Subsystem Interface

STATSSNH on is the same as
setting both bits off.

STATSSNH Select SYSOUT that is not currently
held. Setting both STATSSHL and
STATSSNH on is the same as
setting both bits off.

STATJOBN Job name filter (used if STATSJBN is set). The
name is 1-8 characters, left justified, and padded on
the right with blanks. The generic characters ‘*’ and
‘?’ are allowed.

STATJBIL Low job ID value (used if STATSJBI is set). The job
ID is 2-8 characters, left justified, and padded on
the right with blanks. The JOBID must start with
either the character ‘J’ or ‘JOB’ and is followed by
the low job number.

STATJBIH High job ID value (used if STATSJBI is set). If this
field is not specified, then information is only
returned for the single job ID specified in STATJBIL.
The job ID is 2-8 characters, left justified, and
padded on the right with blanks. The JOBID must
start with either the character ‘J’ or ‘JOB’ and is
followed by the high job number.

STATOJBI Job ID value originally assigned to the job (used if
STATSOJI is set). The original job ID can differ from
the current job ID if the job was sent using NJE.
The job ID is 2-8 characters, left justified, and
padded on the right with blanks. The JOBID must
start with either the character ‘J’ or ‘JOB’ a is
followed by the original job number. Not supported
in JES3.

STATOWNR Current userid that the security product has
assigned as owner of the job (used if STATSOWN
is set). The owner is 1-8 character, left justified, and
padded on the right with blanks. The generic
characters ‘*’ and ‘?’ are allowed.

STATSECL Current SECLABEL that the security product has
assigned to the job (used if STATSSEC is set). The
SECLABEL is 1-8 character, left justified, and
padded on the right with blanks. The generic
characters ‘*’ and ‘?’ are allowed.

STATDEST Default print or punch destination assigned to the
job (used if STATSDST is set). The destination 1-18
character, left justified, and padded on the right with
blanks. The format of the destination is the same as
that allowed on DEST= on the OUTPUT statement.

In JES2, the userid portion of the destination can
contain the generic characters ‘*’ and ‘?’. This can
match jobs with a default print route code that
contains a corresponding userid routing. However,
destinations of the format ‘R*’, ‘RM*’, ‘RMT*’, ‘U*’,

SSI Function Code 80

Chapter 3. SSI Function Codes Your Program Can Request 125

|
|

and ‘N*’ will not match jobs with a default print
route code of remote, special local, or NJE.

STATORGN NJE node where the job originated (used if
STATSORG is set). The origin node is 1-8
character, left justified, and padded on the right with
blanks. Only supported by JES2.

STATXEQN NJE node where the job is to, or was, executed
(used if STATSORG is set). The execution node is
1-8 character, left justified, and padded on the right
with blanks. Only supported by JES2.

STATCLSL The job class associated with the job (used if
STATSCLS is set). The job class is 1-8 character,
left justified, and padded on the right with blanks.

In JES2, the job class can be only 1 character long.
The special job classes of ‘$’ for started tasks
(STCs) and ‘@’ for time sharing users (TSUs) are
also supported.

STATVOL This keyword is supported when requesting
information from a JES2 subsystem only. This field
contains a list of up to four VOLSERs associated
with SPOOL. A job is selected only if it has space
on at least one of the specified SPOOL volumes
(used if STATSVOL is set). The SPOOL VOLSERs
are each 1-6 character, left justified, and padded on
the right with blanks. Unused entries can be set to
blanks or zero.

STATSYS The name of the MVS system on which the job
must be active (used if STATSSYS is set). The job
can be actively executing or active on a device on
that system. The system name is 1-8 character, left
justified, and padded on the right with blanks. The
generic characters ‘*’ and ‘?’ are allowed.

STATMEMB This keyword is supported when requesting
information from a JES2 subsystem only.The name
of the JES member on which the job must be active
(used if STATSMEM is set). The job can be actively
executing or active on a device on that member.
The member name is 1-8 character, left justified,
and padded on the right with blanks. The generic
characters ‘*’ and ‘?’ are allowed.

STATPRIO The 1-byte binary priority associated with the job
(used if STATSPRI is set). The job’s priority must
match exactly to be selected.

In JES2, valid priorities are 0 to 15.

STATPHAZ The current job processing phase (used if
STATSPHZ is set).

In JES2, the valid values for STATPHAZ are:

Phase Value Description

STAT_INPUT Job is active in input processing

SSI Function Code 80

126 z/OS V1R4.0 MVS Using the Subsystem Interface

|

|

|
|

STAT_WTCONV
Job is queued for conversion

STAT_CONV Job is actively converting

STAT_VOLWT Job is queued for SETUP (not
currently used by JES2 code)

STAT_SETUP Job is active in SETUP (not
currently used by JES2 code)

STAT_SELECT
Job is queued for execution

STAT_ONMAIN
Job is actively executing

STAT_SPIN JES2 is processing SPIN data sets
for the JOB

STAT_WTBKDN
Job is queued for output processing

STAT_BRKDWN
Job is active in output processing

STAT_OUTPT Job is on the hard copy queue

STAT_WTPURG
Job is queued for purge

STAT_PURG Job is currently being purged

STAT_RECV Job is active on an NJE SYSOUT
receiver

STAT_WTXMIT
Job is queued for execution on
another NJE node

STAT_XMIT Job us active on an NJE JOB
transmitter

STAT_EXEC Job has not completed execution
(combines multiple states in one
phase request)

STAT_POSTEX
Job has completed execution
(combines multiple states in one
phase request)

In JES3, the valid values for STATPHAZ are:

Phase Value Description

STAT_NOSUB
No subchain exists

STAT_FSSCI Job is active in
conversion/interpretation in an FSS
address space

STAT_PSCBAT
Job is awaiting postscan (batch)

SSI Function Code 80

Chapter 3. SSI Function Codes Your Program Can Request 127

STAT_PSCDSL
Job is awaiting postscan (demand
select)

STAT_FETCH Job is awaiting volume fetch

STAT_VOLWT Job is awaiting start setup

STAT_SYSSEL
Job is awaiting or active in MDS
system select processing

STAT_ALLOC Job is awaiting resource allocation

STAT_VOLUAV
Job is awaiting unavailable
volume(s)

STAT_VERIFY
Job is awaiting volume mount(s)

STAT_SYSVER
Job is awaiting or active in MDS
system verification processing

STAT_ERROR
Job encountered an error during
MDS processing

STAT_SELECT
Job is awaiting selection on main

STAT_ONMAIN
Job is scheduled on main

STAT_BRKDWN
Job is awaiting breakdown

STAT_RESTART
Job is awaiting MDS restart
processing

STAT_DONE Main and MDS processing
complete for job

STAT_OUTPT Job is awaiting output service

STAT_OUTQUE
Job is awaiting output service writer

STAT_OSWAIT
Job is awaiting rsvd services

STAT_CMPLT Output service complete for job

STAT_DEMSEL
Job is awaiting selection on main
(demand select job)

STAT_EFWAIT
Ending function request waiting for
I/O completion

STAT_EFBAD Ending function request not
processed

SSI Function Code 80

128 z/OS V1R4.0 MVS Using the Subsystem Interface

|
|

STAT_MAXNDX
Maximum request index value

STATSRVC The name of the WLM service class assigned to
the job (used if STATSSRV is set). Jobs only have
service classes assigned to them if they have
completed conversion processing and have not
completed execution processing. The service class
is 0-8 characters, left justified, and padded on the
right with blanks.

STATSENV The name of scheduling environment (SCHENV=
from the JOB statement) required by a job. (used if
STATSSEN is set). Jobs only have scheduling
environments assigned to them if they have
completed conversion processing and have not
completed execution processing. The scheduling
environment is 0-16 characters, left justified, and
padded on the right with blanks. The generic
characters ’*’ and ’?’ are allowed.

STATCTKN Pointer to the SYSOUT token to be used for
selection (used if STATSCTK is set). The token can
only be obtained from dynamic allocation or from a
previous extended status request.

STATSCRE Userid that was in control when the SYSOUT data
set was allocated (used if STATSSOW is set). The
userid is 1-8 characters, left justified, and padded
on the right with blanks. The generic characters ’*’
and ’?’ are allowed.

STATSDES Destination to which the SYSOUT is routed (used if
STATSSDS is set). The destination is 1-18
characters, left justified, and padded on the right
with blanks. The format of the destination is the
same as that allowed on DEST= on the OUTPUT
statement. IP addresses are not allowed.

In JES2, the userid portion of the destination can
contain the generic characters ’*’ and ’?’. This can
match SYSOUT with a route code that contains a
corresponding userid routing. However, destinations
of the format ’R*’, ’RM*’, ’RMT*’, ’U*’, and ’N*’ will
not match SYSOUT with a route code of remote,
special local, or NJE.

STATSCLA The class associated with the SYSOUT (used if
STATSSCL is set). The class is 1-8 characters, left
justified, and padded on the right with blanks.

Currently, only 1 character SYSOUT classes are
valid.

STATSWTR The external writer name associated with the
SYSOUT (used if STATSSWR is set). The external
writer name is 1-8 characters, left justified, and
padded on the right with blanks. The generic
characters ’*’ and ’?’ are allowed.

SSI Function Code 80

Chapter 3. SSI Function Codes Your Program Can Request 129

Set all other fields in the IAZSSST control block to
binary zeros before issuing the first in a series of
IEFSSREQ macro calls. A memory management
call (STATTYPE set to STATMEM) is required
before updating output fields.

Output Register Information
When control returns to the caller, the general purpose registers contain:

Register Contents

0 Used as a work register by the system

1 Address of the SSOB control block

2 — 13 Same as on entry to call

14 Return address

15 Return code

Return Code Information
The SSI places one of the following decimal return codes in register 15. Examine
the return code to determine if the request was processed.

Return Code

(Decimal) Meaning

SSRTOK (0) The extended status function call has completed.
Check the SSOBRETN field for specific function
information.

SSRTNSUP (4) The subsystem specified in the SSIBSSNM field
does not support the extended status function call.

SSRTNTUP (8) The subsystem specified in the SSIBSSNM field
exists but is not active.

SSRTNOSS (12) The subsystem specified in the SSIBSSNM field is
not defined to MVS.

SSRTDIST (16) The pointer to the SSOB control block or the SSIB
control block is not valid, or the function code
specified in the SSOBFUNC field is greater than the
maximum number of functions supported by the
subsystem specified in the SSIBSSNM field.

SSRTLERR (20) Either the SSIB control block or the SSOB control
block has incorrect lengths or formats.

SSRTNSSI(24) The SSI has not been initialized.

Output Parameters
Output parameters for the function routine are:
v SSOBRETN
v STATREAS
v STATREA2
v IAZSSST

SSOBRETN Contents: When control returns to the caller and register 15 contains
a zero, the extended status function places one of the following decimal values in
the SSOBRETN field:

SSI Function Code 80

130 z/OS V1R4.0 MVS Using the Subsystem Interface

Value (Decimal) Meaning

STATRTOK (0) Input parameters were valid, check STATJOBF for
output.

STATINVA (4) The search arguments, though syntactically valid,
cannot be used (for example, specifying a volume
serial in STATVOL that is not being used as a
SPOOL volume).

STATLERR (8) Logic error in one of the search arguments. See
output parameter STATREAS (below) for details as
to the exact error.

STATINVT (12) The request type in STATTYPE is not valid.

SSSTREAS Contents: When SSOBRETN contains an 8 (STATLERR) indicating a
logic error, the field SSSTREAS indicates the specific error detected. SSSTREAS
will be set to one of the following decimal values:

Value (Decimal) Meaning

STATRDST (4) Destination in STATDEST is not valid.

STATRJBL (8) Low job ID in STATJBIL is not valid.

STATRJBH (12) High job ID in STATJBIH is not valid.

STATRJLM (16) The high job ID in STATJBIH is less than the low
job ID in STATJBIL.

STATRCLS (20) Job class in STATCLSL is not valid.

STATRVOL (24) The volume list in STATVOL is null or has
characters that are not that are not allowed.

STATRJBH (28) The phase specified in STATPHAZ is either not
valid or not supported by this subsystem.

STATRQUE (32) Unable to access job queue.

STATREYE (36) The eyecatcher in STATEYE is not C'STAT'

STATRLEN (40) The length of the IAZSSST specified in STATLEN is
too short.

STATRJBN (44) The job name in STATJOBN is not valid.

STATROWN (48) The owning userid in STATOWNR is not valid.

STATRSYS (52) The system name in STATSYS is not a valid
system name.

STATRMEM (56) The member name in STATMEMB is not valid.

STATRCST (60) STATSEL2 specifies to select only non-batch jobs
and batch job class selection was specified in
STATSCLS.

STATROJB (64) Original job ID in STATOJBI is not valid.

STATRSEC (68) The SECLABEL in STATSECL is not valid.

STATRORG (72) The origin node in STATORGN is not defined.

STATRXEQ (76) The execution node in STATXEQN is not defined.

STATRPRI (80) The priority in STATPRIO is not valid for this JES.

SSI Function Code 80

Chapter 3. SSI Function Codes Your Program Can Request 131

STATRSVC (84) The service class in STATSRVC is not valid.

STATSSEN (88) The scheduling environment in STATSSEN is not
valid.

STATRSCT (92) The SYSOUT token pointed to by STATCTKN is not
valid.

STATRSCR (96) The SYSOUT owner in STATSCRE is not valid.

STATRSSD (100) The SYSOUT destination in STATSDES is not valid.

STATRSSC (104) The SYSOUT class in STATSCLA is not valid.

STATRSXW (108) The SYSOUT external writer in STATSWTR is not
valid.

STATRECJ (112) STATSJBI and STATSCTK are mutually exclusive.

SSSTREA2 Contents: When SSOBRETN contains an 8 (STATLERR) indicating a
logic error, the field SSSTREA2 can further describe the reason for the error. The
content of this field is subsystem dependent. For more information contact IBM
service.

IAZSSST Contents: The extended status service returns two types of data, fixed
data in the IAZSSST and elements for each job that matched the filters specified.
The following describes the fixed data fields returned in the IAZSSST:

Field Name Description

STATVERO Version level of the last subsystem to respond to the request. The
first byte is the high-level version of the responder. The second byte
is the service level of the responder. For a more detailed
explanation of the version and service levels, refer to the IAZSSST
mapping macro in SYS1.MACLIB.

STATJOBF Pointer to a chained list of output elements that contains
information about the jobs that match the input filters. There is one
element per job. See “Job Information Elements” on page 132 for a
description of each element. If SYSOUT information is requested,
the SYSOUT output elements are chained out of the job level
output element (of the owning job). See “SYSOUT Information
Elements” on page 138 for a description of each SYSOUT level
element.

STATNRJQ The number of jobs that match the specified filter requirements.

Job Information Elements
For each job that matches specified filter requirements, an information element is
added to the chain pointed to by STATJOBF. Each element is composed of the
following:
v A variable-sized prefix (mapped by the STATJQ DSECT)
v A fixed-size job queue element header (mapped by the STATJQHD DSECT)
v One or more variable-sized data sections

Information Element Prefix: Each job information element starts with a prefix area.
This area is mapped by the STATJQ DSECT in the IAZSSST macro. STATJOBF
points to the start of the first prefix area. Subsequent areas are chained using the
STJQNEXT field. Because the size of the prefix area can vary as a result of service
being applied, do not use the equate STJQSIZE to access the data that follows the
prefix. To obtain the address of subsequent fields, add the field STJQOHDR to the
start of the prefix.

SSI Function Code 80

132 z/OS V1R4.0 MVS Using the Subsystem Interface

The fields in the STATJQ prefix are:

Field Name Description

STJQEYE Eycatcher C‘SJQE’.

STJQOHDR Offset from the start of the STATJQ to the first job information data
section.

STJQNEXT Address of the next STATJQ area on the STATJOBF chain.

STJQSE If SYSOUT data is requested, this is the head of the SYSOUT
information elements (STATSE) for this job.

STJQOSS Name of the subsystem that created this entry.

Information Element Data Sections: The variable data sections, which contain
information about the job, follow the STATJQ prefix. Each section starts with a
2-byte length, a 1-byte section type, and a 1-byte section modifier. The data length
can be from 1 through 65535 bytes. The type and modifier are used to determine
the mapping needed to access the data in the section. The first section after the
STATJQ prefix is a special 4-byte section which describes the length and type of all
sections that follow. The DSECTs that map each section are in the IAZSSST macro.

Job Queue Element 1st Section: This section is mapped by the STATJQHD
DSECT and is identified by a type of STHD1HDR (0) and a modifier of STHD1MOD
(0). This is the only fixed-size section with a length of STHDSIZE (4 bytes). The
length in this section is the total length of all sections that follow.

The fields in the STATJQHD section are:

Field Name Description

STHDLEN Length of all sections which follow (including this section)

STHDTYPE Section type identifier of STHD1HDR (0)

STHDMOD Section type modifier of STHD1MOD (0)

STHDSIZE Length of this section (4 bytes)

Job Queue Element Terse Section: This section is mapped by the STATJQTR
DSECT and is identified by a type of STTRTERS (1) and a modifier of STTRTMOD
(0). All job information elements have at least one section of this type. This section
contains information common to all types of jobs.

The fields in the STATJQTR section are:

Field Name Description

STTRLEN Length of this section

STTRTYPE Section type identifier of STTRTERS (1)

STTRMOD Section type modifier of STTRTMOD (0)

STTRNAME Job name

STTRJID Job ID

STTROJID Original job ID. This might be different from STTRJID if the job was
sent using NJE.

STTRCLAS Job execution class.

SSI Function Code 80

Chapter 3. SSI Function Codes Your Program Can Request 133

In JES2, started tasks (STCs) have a job class of ‘$’ and time
sharing users (TSUs) have a job class of ‘@’.

STTRONOD Job’s origin node

STTRXNOD Job’s execution node. This information is not returned by JES3
subsystems.

STTRPRND The default print node for the job

STTRPRRE The default print remote or userid for the job

STTRPUND The default punch node for the job

STTRPURE The default punch remote for the job

STTROUID The userid currently assigned as the owner of the job by the
security product.

STTRSECL The SECLABEL currently assigned to the job by the security
product.

STTRSYS MVS system name where the job is active (blank if the job is not
active).

STTRMEM JES member name where the job is active (blank if the job is not
active).

STTRDEVN JES device name on which the job is active (blank if the job is not
active on a device).

STTRPHAZ Current job phase. See STATPHAZ for a list of possible values.

STTRHOLD Current hold state for the job.

Field Value Description

STTRJNHL Job is not held

STTRJHLD Job is held

STTRJHLD Job is held for duplicate job name

STTRJTYP Type of job

Field Value Description

STTRSTC Started task

STTRTSU Time sharing user

STTRJOB Batch job

STTRAPPC APPC initiator

STTRPRIO Job’s priority

STTRARMS Job’s automatic restart manager status

Bit Value Description

STTRARMR Job is automatic restart manager registered

STTRARMW Job is awaiting automatic restart manager restart

STTRMISC Miscellaneous indicators

Bit Value Description

STTRMSPN JESLOG for this job is spinable

STTRMXRC

SSI Function Code 80

134 z/OS V1R4.0 MVS Using the Subsystem Interface

|
|

||

||

||

Field Name Description

STTRXIND Indicator of how the job ended. The first two bits
indicate if the field STTRMSCC contains a value.
The remaining six bits contain the actual completion
type.

Field Name Description

STTRXAB If this bit is on, STTRMXCC
contains an ABEND code.

STTRXCDE If this bit is on, STTRMXCC
contains a completion code.

STTRXUNK No completion information is
available. This might be because
the job has not completed or when
the job did complete, the
completion information was not
saved.

STTRXNRM Job ended normally

STTRXCC Job ended by completion code

STTRXJCL Job had a JCL error

STTRXCAN Job was canceled

STTRXABN Job ABENDed

STTRXCAB Converter ABENDed while
processing the job

STTRXSEC Job failed security checks

STTRXEOM Job failed in end-of-memory

STTRMXCC Code associated with completion. If the job
ABENDed (STTRXAB is on), then the first 12 bits is
the SYSTEM ABEND code, and the next 12 bits is
a USER ABEND code.

Job Queue Element JES2 Terse Section: This section is mapped by the
STATJ2TR DSECT and is identified by a type of STJ2TERS (2) and a modifier of
STJ2TMOD (0). This section is present if the job information came from a JES2
subsystem. This section contains JES2-specific information common to all types of
jobs.

The fields in the STATJ2TR section are:

Field Name Description

STJ2LEN Length of this section

STJ2TYPE Section type identifier of STJ2TERS (2)

STJ2MOD Section type modifier of STJ2TMOD (0)

STJ2FLG1 General flag byte

Bit Value Description

STJ21PRO Job is protected

STJ21IND Job is set to independent mode

SSI Function Code 80

Chapter 3. SSI Function Codes Your Program Can Request 135

STJ21SYS Job represents a system data set

STJ21CNW Job can only be processed by a converter that can
wait for OS resources

STJ2JKEY The JES2 job key for the JOB

STJ2SPOL The SPOOL token associated with the job

STJ2SPAC Number of track groups of SPOOL space used by the job (a value
of -1 indicates that the count is not available).

Job Queue Element Member Affinity Section: This section is mapped by the
STATAFFS DSECT and is identified by a type of STAFFIN (3) and a modifier of
STAFTMOD (0). This section is present if the job has affinities to a subset of
members. This section is not present if the job can run on any member.

The fields in the STATAFFS section are:

Field Name Description

STAFLEN Length of this section

STAFTYPE Section type identifier of STAFFIN (3)

STAFMOD Section type modifier of STAFTMOD (0)

STAFNUM Number of members for which the job has affinity

STAFMEMB First member for which job has affinity. Other member names follow
after this member name. The number of member names present is
in field STAFNUM.

Job Queue Element Execution Scheduling Section: This section is mapped by
the STATSCHD DSECT and is identified by a type of STSCHED (’04’x) and a
modifier of STSCTMOD (’00’x). This section is present if the job is scheduled for
execution. This section is not returned by JES3 subsystems.

The fields in the STATSCHD section are:

Field Name Description

STSCLEN Length of this section.

STSCTYPE Section type identifier of STSCHED (’04’x)

STSCMOD Section type modifier of STSCTMOD (’00’x)

STSCAHLD Reasons why the job will not run

Bit Value Description

STSCJCLS Job class is held

STSCJCLM Job class limit has been reached

STSCJSCH Scheduling environment is not available

STSCJAFF Systems for which the job has affinity are not
available

STSCJSPL Spool volumes needed by the job are not available

STSCJBSY Job is busy on a device

STSCNOSY No system(s) with the correct combination of
resources is available

SSI Function Code 80

136 z/OS V1R4.0 MVS Using the Subsystem Interface

STSCFLG1 General flag byte

Bit Value Description

STSC1JCM Mode of the JOBCLASS. Off is JES mode, on is
WLM mode.

STSCSRVC Service class associated with the job

STSCESTT Estimated time to execute (in seconds) for the job. This is only
available if the job:

Is awaiting execution
Is scheduled to a WLM-managed job class
Is not held
Can currently run (STSCAHLD is zero)

If the estimated time is not available, this field is set to negative 1
(−1). The time is calculated on the average queue time for a job in
this job class (STSCAVGQ) and the amount of time this job has
been queued (STSCQTIM). If the job has been waiting longer than
average, STSCESTT will be set to negative 1 (−1).

STSCSENV Scheduling environment required by the job.

STSCQPOS Position of this job on a WLM service class queue (if STATSPOS is
on)

STSCQNUM Number of jobs on this WLM service class queue (if STATSPOS is
on)

STSCQACT Number of active jobs on this WLM service class queue (if
STATSPOS is on)

STSCAVGQ Average queue time for jobs in this WLM service class. STSCAVGQ
is one component of STSCESTT. If STSCESTT is not available, this
field is zero (0). If the job has already waited more than the
average wait time, this field (and STSCQTIM) is set to negative 1
(−1).

STSCQTIM Actual queue time for this job. STSCQTIM is one component of
STSCESTT. If STSCESTT is not available, this field is zero (0). If
the job has already waited more than the average wait time, this
field (and STSCAVGQ) is set to negative 1 (−1).

Job Queue Element Schedulable Systems Section: This section is mapped by
the STATSCHS DSECT and is identified by a type of STSCHED (’04’x) and a
modifier of STSSTMOD (’01’x). This section is present if the job is scheduled for
execution, requires a scheduling environment, and that environment is available on
at least one system. This section lists the MVS system names where the scheduling
environment is available. This section is not returned by JES3 subsystems.

The fields in the STATSCHS section are:

Field Name Description

STSSLEN Length of this section.

STSSTYPE Section type identifier of STSCHED (’04’x)

STSSMOD Section type modifier of STSSTMOD (’01’x)

STSSNUM Number of systems that have the required scheduling environment.

STSSSYS Name of first system that has the required scheduling environment.

SSI Function Code 80

Chapter 3. SSI Function Codes Your Program Can Request 137

Other system names follow after this system name. The number of
system names present is in field STSSNUM.

SYSOUT Information Elements
When SYSOUT information is requested, for each SYSOUT element that matches
specified filter requirements, a SYSOUT information element is added to the
corresponding job level information element (STATJQ) chain pointed to by STJQSE.
Each element is composed of the following:
v A variable-sized prefix (mapped by the STATSE DSECT)
v A fixed-size SYSOUT element header (mapped by the STATSEHD DSECT)
v One or more variable-sized data sections

SYSOUT Information Element Prefix: Each SYSOUT information element starts
with a prefix area. This area is mapped by the STATSE DSECT in the IAZSSST
macro. STJQSE of the corresponding job information element (STATJQ) points to
the start of the first prefix area. Subsequent areas for the same job are chained
using the STSEJNXT field. Because the size of the prefix area can vary as a result
of service being applied, do not use the equate STSESIZE to access the data that
follows the prefix. To obtain the address of subsequent fields, add the field
STSEOHDR to the start of the prefix.

The fields in the STATSE prefix are:

Field Name Description

STSEEYE Eyecatcher C‘SOUT’

STSEOHDR Offset from the start of the STATSE to the first SYSOUT information
data section.

STSEJNXT Address of the next STATSE area for this job.

STSEJOB Address of the STATJQ for the job that owns this SYSOUT.

SYSOUT Information Element Data Sections: The variable data sections which
contain information about the SYSOUT follow the STATSE prefix. Each section
starts with a 2-byte length, a 1-byte section type, and a 1-byte section modifier. The
data length can be from 1 through 65535 bytes. The type and modifier are used to
determine the mapping needed to access the data in the section. The first section
after the STATSE prefix is a special 4-byte section which describes the length and
type of all sections that follow. The DSECTs that map each section are in the
IAZSSST macro.

SYSOUT Queue Element 1st Section: This section is mapped by the STATSEHD
DSECT and is identified by a type of STSH1HDR (’40’x) and a modifier of
STSH1MOD (’00’x). This is the only fixed-size section with a length of STSHSIZE (4
bytes). The length in this section is the total length of all sections that follow.

The fields in the STATSEHD section are:

Field Name Description

STSHLEN Length of all sections which follow (including this section)

STSHTYPE Section type identifier of STSH1HDR (’40’x)

STSHMOD Section type modifier of STSH1MOD (’00’x)

STSHSIZE Length of this section (4 bytes)

SSI Function Code 80

138 z/OS V1R4.0 MVS Using the Subsystem Interface

SYSOUT Element Terse Section: This section is mapped by the STATSETR
DSECT and is identified by a type of STSTTERS (’41’x) and a modifier of
STSTTMOD (’00’x). All job information elements have at least one section of this
type. This section contains information common to all types of jobs.

The fields in the STATSETR section are:

Field Name Description

STSTLEN Length of this section.

STSTTYPE Section type identifier of STSTTERS (’41’x)

STSTMOD Section type modifier of STSTTMOD (’00’x)

STSTOUID Userid that owns the SYSOUT

STSTSECL SECLABEL assigned to the SYSOUT

STSTDEST SYSOUT’s destination

STSTCLAS Class assigned to the SYSOUT

STSTNREC Number of records in the SYSOUT element

STSTPAGE Number of pages in the SYSOUT element

STSTLNCT Number of lines in the SYSOUT element (JES3 only)

STSTBYCT Number of bytes in the SYSOUT element (JES3 only)

STSTFORM Form assigned to the SYSOUT

STSTFCB Forms control buffer (FCB)

STSTUCS Universal character set (UCS)

STSTXWTR External writer name

STSTPMDE Processing mode (PRMODE)

STSTFLSH Flash

STSTCHAR Character sets assigned to the SYSOUT (JES3 only)

STSTMODF MODIFY=(modname) value (JES3 only)

STSTMODC MODIFY=(,trc) value (JES3 only)

STSTSYS MVS system name where output currently being processed (blank if
not currently active)

STSTMEM JES member name where output currently being processed (blank
if not currently active).

STSTDEVN Device name on which output currently being processed (blank if
not currently active)

STSTHSTA Current hold status of the SYSOUT

Bit Value Description

STSTHOPR An operator hold has been set using an operator
command

STSTHUSR A user hold has been set using JCL (such as
HOLD=YES on the DD statement)

STSTHSYS A system (error) hold has been set (see
STSTHRSN for hold reason)

SSI Function Code 80

Chapter 3. SSI Function Codes Your Program Can Request 139

STSTHTSO SYSOUT is held for TSO (JES3 only)

STSTHXWT SYSOUT is held for an external writer (JES3 only)

STSTHRSN System hold reason (see fields OHLDJxxx in IAZOHLD for the
definition of possible values)

STSTDISP Current OUTDISP value for the SYSOUT (JES2 only)

Field Value Description

STSTDHLD OUTDISP=HOLD

STSTDLVE OUTDISP=LEAVE

STSTDWRT OUTDISP=WRITE

STSTDKEP OUTDISP=KEEP

STSTFLG1 General flag byte

Bit Value Description

STST1BRT BURST=YES requested

STST1DSI 3540 held SYSOUT element

STST1IPA SYSOUT destination includes an IP address

STST1CPD SYSOUT element includes page mode data

STST1SPN SYSOUT element was spun

STSTPRIO Priority assigned to the SYSOUT

STSTSODI EBDCIC SYSOUT identifier which can be used in operator
commands for this SYSOUT element. The contents of this field are
subsystem dependent and can change from one release to another.

STSTCTKN SYSOUT token associated with the SYSOUT element. This token
can be passed on subsequent extended status requests or on the
SYSOUT API (SAPI). This token may be different that the SYSOUT
token returned by dynamic allocation.

Using STSTCTKN

You may receive multiple tokens for a set of data sets meeting your
status selection criteria. This is based on how the JES groups data
sets into schedulable elements and may be different for each JES.

For example, if your status request specifies FORMS as the only
selection criterion, you may still receive multiple tokens for a single
job because other characteristics may vary or because of the way
JES decided to group the data sets under a single schedulable
element.

The Extended Status token will return the same group of data sets
on a subsequent SAPI call unless:

v The JES was restarted

v Some of the output was modified such that a new schedulable
element was created in place of an existing one

v The schedulable element was either deleted by the operator or it
was processed by another application or writer

Therefore, it is possible that you will receive SSS2EODS for what
otherwise would be a valid token request. To make sure there are

SSI Function Code 80

140 z/OS V1R4.0 MVS Using the Subsystem Interface

|

|
|
|

|
|
|
|
|

|
|

|

|
|

|
|

|
|

no data sets left in JES that meet your selection criteria, you should
repeat a status request, examine the results, and issue another
SAPI request until you get an output group for a different job. You
can then continue with that job or issue a PUT for the received
group with the KEEP disposition to return it back to the queue for
some other output function to process.

SYSOUT Element JES2 Terse Section: This section is mapped by the STATSJ2T
DSECT and is identified by a type of STS2TERS (’42’x) and a modifier of
STS2TMOD (’00’x). This section is present if the SYSOUT information came from a
JES2 subsystem. This section contains JES2-specific information common to all
SYSOUT.

The fields in the STATSJ2T section are:

Field Name Description

STS2LEN Length of this section.

STS2TYPE Section type identifier of STS2TERS (’42’x)

STS2MOD Section type modifier of STS2TMOD (’00’x)

STS2FLG1 General flag byte

Bit Value Description

STS21DSH JOE representing this SYSOUT data set has been
cloned

STS21TSO JOE is available for TSO OUTPUT processing

STS2OGNM JOE output group name

STS2CRTM JOE create time (STCK format system clock time)

JES3 Unsupported Flags and Fields
Table 2 summarizes which flags and fields are not supported by JES3.

Table 2. JES3 Unsupported Flags and Fields

Flagname Fieldname Description

STATSOJI STATOJBI Original job ID

STATSVOL STATVOL List of SPOOL volume serial numbers

STATSMEM STATMEMB JES member name where job is active

STATSPOS Queue position

STATSORG STATORGN Origin node name for selection

STATSXEQ STSTXEQN Execution node name for selection

Example
The following is a coded example of a program that generates an extended status
function call (SSI function code 80).

This program is reentrant and must run in an authorized library.
STATUS2 TITLE ’Sample expanded status SSI call’
STATUS2 CSECT ,
STATUS2 AMODE 31
STATUS2 RMODE ANY

USING STATWORK,R10 Est work area addressability

SSI Function Code 80

Chapter 3. SSI Function Codes Your Program Can Request 141

|
|
|
|
|
|

|
|

||

|||

|||

|||

|||

|||

|||

|||

USING STATMAIN,R12 Est base addressability

STATMAIB STM R14,R12,12(R13) Save callers registers
LR R12,R15 Set base register
LR R8,R1 Save CPPL address

STORAGE OBTAIN,LENGTH=STATWLEN,ADDR=(R10),LOC=ANY C
Obtain local work area

LR R0,R10 Zero the
LA R1,STATWLEN work area
SLR R15,R15 that was
MVCL R0,R14 just obtained

ST R13,SAVEAREA+4 Chain
LA R15,SAVEAREA in
ST R15,8(R13) new
LR R13,R15 save area

* Determine the local userid *

IAZXJSAB READ,USERID=THISUSER Get execution user ID

* Set up basic extended status SSOB *

USING SSOB,STSSOB Est SSOB addressability

LA R0,STSSOB Ensure that
LA R1,L’STSSOB the SSOB
SLR R15,R15 area is
MVCL R0,R14 all zero

MVC SSOBID,=C’SSOB’ Set SSOB eyecatcher
MVC SSOBLEN,=Y(SSOBHSIZ) Set length of SSOB header
MVC SSOBFUNC,=Y(SSOBESTA) Set status 2 function code
MVC SSOBSSIB,=F’0’ Use LOJ SSIB
LA R0,SSOB+SSOBHSIZ Point to STAT extension
ST R0,SSOBINDV Point base to extension

USING STAT,SSOB+SSOBHSIZ Est STAT extension addr’blty

MVC STATEYE,=C’STAT’ Move in the eyecatcher
MVC STATLEN,=Y(STATSIZE) Set length of extension
MVC STATVER,=AL1(STATCVRL,STATCVRM) Set current version
MVI STATTYPE,STATTERS Set terse data request

* Make only filter this userid *

OI STATSEL1,STATSOWN Indicate OWNER is a filter
LA R0,STATOWNR Get area in STAT
LA R1,L’STATOWNR and length
LA R14,THISUSER Get this userid
LA R15,L’THISUSER and length
ICM R15,B’1000’,=C’ ’ Pad with blanks
MVCL R0,R14 Copy parm to STAT

* Call the subsystem *

MODESET MODE=SUP Supervisor state for SSI function

SSI Function Code 80

142 z/OS V1R4.0 MVS Using the Subsystem Interface

LA R1,STSSOB Get SSOB address
O R1,=X’80000000’ Indicate last SSOB
ST R1,PARMPTR Set parm pointer
LA R1,PARMPTR Get R1 for IEFSSREQ
IEFSSREQ Issue extended status SSI call
LTR R15,R15 Any SSI errors?
BNZ SSREQERX Yes, go process errors

MODESET MODE=PROB Return to problem program state

* Process results for IEFSSREQ here *

USING STATJQ,R4 Est STATJQ addressability

LA R4,STATJOBF-(STJQNEXT-STATJQ) Get 0th STATJQ
LOOPSTJQ ICM R4,B’1111’,STJQNEXT Get next area

BZ DONESTJQ No more, done with STATJQs
LH R3,STJQOHDR Get length of STATJQ
LA R5,STATJQ(R3) Point to 1st section
SLR R2,R2 Get total
ICM R2,B’0011’,STHDLEN-STATJQHD(R5) Header length
LA R5,STHDSIZE(R5) Point to 1st variable section
SL R2,=A(STHDSIZE) Decriment for 1st header length

LOOPSECT CLC 2(2,R5),=AL1(STTRTERS,STTRTMOD) Terse section?
BNE NOTTERSE No, check next type

USING STATJQTR,R5 Est Terse section addr’blty
* Process terse section data

DROP R5 Drop terse section
B NEXTSECT Go process next section

NOTTERSE CLC 2(2,R5),=AL1(STJ2TERS,STJ2TMOD) JES2 section?
BNE NOTJES2 No, check next type

USING STATJ2TR,R5 Est JES2 section addr’blty
* Process JES2 section data

DROP R5 Drop JES2 section

B NEXTSECT Go process next section

NOTJES2 CLC 2(2,R5),=AL1(STAFFIN,STAFTMOD) Affinity section?
BNE NEXTSECT Not known, get next section

USING STATAFFS,R5 Est Affinity section addr’blty
* Process JES2 section data

DROP R5 Drop Affinity section

NEXTSECT SLR R15,R15 Get length of
ICM R15,B’0011’,0(R5) current section
SR R2,R15 Decrement total count
BNP LOOPSTJQ None left, loop
ALR R5,R15 Point to next section
B LOOPSECT Loop for all sections

DONESTJQ DS 0H Done processing all elements

* Return data area passed *

MODESET MODE=SUP Supervisor state for SSI function

MVI STATTYPE,STATMEM Set memory management call

LA R1,STSSOB Get SSOB address

SSI Function Code 80

Chapter 3. SSI Function Codes Your Program Can Request 143

O R1,=X’80000000’ Indicate last SSOB
ST R1,PARMPTR Set parm pointer
LA R1,PARMPTR Get R1 for IEFSSREQ

IEFSSREQ Issue extended status SSI call

MODESET MODE=PROB Return to problem program state
B EXIT Go exit the command processor

SSREQERX LR R2,R15 Save return code
MODESET MODE=PROB Return to problem program state
LR R15,R2 Restore return code
B SSREQERR Go process error

* Process IEFSSREQ error return codes *

USING GFDSECTD,R1 Est general failure parm list

SSREQERR LA R1,FAILPARM Get address of fail parm area
ST R1,PARMPTR Save in pointer word

ST R15,GFRCODE Save IEFSSREQ return code
MVC GFCALLID,=Y(GFSSREQ) Indicate IEFSSREQ error
ST R8,GFCPPLP Save CPPL pointer addr
MVC ECBADS,=F’0’ Zero ECB address
LA R0,ECBADS Set ECB address
ST R0,GFECBP into the PPL

LA R1,PARMPTR Get addr of parm pointer
LINK EP=IKJEFF19 Call TSO GNRLFAIL service

B EXIT Return to caller

DROP R1 Drop GFDSECTD

* Return to the caller *

EXIT L R13,SAVEAREA+4 Get callers save area

STORAGE RELEASE,LENGTH=STATWLEN,ADDR=(R10) C
Return local work area

L R14,12(R13) Restore callers
LM R0,R12,20(R13) registers
SLR R15,R15 Set a zero return code
BR R14 Return to caller

DROP R10,R12 Drop STATWORK, Local

LTORG ,

* Work area DSECT *

STATWORK DSECT ,
SAVEAREA DS 18F Save area

THISUSER DS CL8 This user ID

PARMPTR DS A Pointer for MVS calls

ECBADS DS F CMD processor ECB

SSI Function Code 80

144 z/OS V1R4.0 MVS Using the Subsystem Interface

FAILPARM DS XL(GFLENGF) Parm area for GNRLFAIL

STSSOB DS XL(SSSTLEN8) Enhanced status SSOB

STATWLEN EQU *-STATWORK Length of local storage area

* Equates *

R0 EQU 0
R1 EQU 1
R2 EQU 2
R3 EQU 3
R4 EQU 4
R5 EQU 5
R6 EQU 6
R7 EQU 7
R8 EQU 8
R9 EQU 9
R10 EQU 10
R11 EQU 11
R12 EQU 12
R13 EQU 13
R14 EQU 14
R15 EQU 15

* TSO and MVS DSECTs *

IKJEFFGF GFDSECT=YES
IEFJESCT ,
IEFJSSOB ,
IAZSSST DSECT=YES
IAZJSAB ,
IHAPSA ,
IHAASCB ,
IHAASSB ,
IKJTCB ,
IHASTCB ,
CVT DSECT=YES

STATUS2 CSECT ,
END ,

SSI Function Code 80

Chapter 3. SSI Function Codes Your Program Can Request 145

SSI Function Code 80

146 z/OS V1R4.0 MVS Using the Subsystem Interface

Chapter 4. JES Client/Server Print Interface

In OS/390 Release 5, JES provides an interface for a job to function as a server
and make SYSOUT requests on behalf of a client.

There are several ways in which a data set created by a server differs from a data
set created by an ordinary SYSOUT DD or dynamic allocation.

1. Data sets created by a server use the DALRTCTK dynamic allocation text unit,
which causes JES to create a unique Client Token (CTOKEN) associated with
the data set from that point on.

2. The server can use the Extended Status or SYSOUT Application Programming
Interface (SAPI) Subsystem Interface (SSI) calls to access a data set, specifying
a CTOKEN in the selection criteria in order to request a particular data set,
without needing to know any other information about the data set.

3. When a data set has a CTOKEN, JES informs the application, through the use
of ENF signal 58, of events relating to the data set. Among these events are
selection by a writer, deselection by a writer, and data set purge. JES also
issues signals for important events related to any job that has created at least
one data set with a CTOKEN, such as job purge.

Creating a CTOKEN
The server creates an 80-byte CTOKEN using the Dynamic Allocation text unit of
DALRTCTK. The DALRTCTK text unit appears as follows:

+0 +2 +4 +6

DALRTCTK 00 01 00 50 Returned data

Upon return from SVC 99, the data starting at position 6 in the CTOKEN text unit
contains the CTOKEN returned by JES, provided the allocation was successful.
When a CTOKEN is returned to you, add it to your list of CTOKENs for later use.

CTOKENs contain internal information that JES uses to locate the data set when
the server issues SSI requests. Once you have received a CTOKEN from JES, do
not change its contents except in one special case that will be discussed later.

CTOKENs contain ordering information. This allows you to store CTOKENs in a
data structure of your choice that can make use of the order and result in faster
searches. CTOKENs are not ordered according to a creation timestamp; they are
ordered internally by JES.

Refer to Chapter 3, “SSI Function Codes Your Program Can Request” on page 13
and SSI 54 for a detailed description of the Subsystem Version Information Call.

Determining If You Can Request a CTOKEN
The DALRTCTK text unit is available only when JES2 or JES3 is at the OS/390
Release 5 level, or higher. If a DYNALLOC request is made with this text unit below
the required JES level, the allocation will fail with a return code of 4 and an
S99ERROR code of x’02CC’.

There are two ways you can determine whether the JES level you are running on
can accept the DALRTCTK text unit. One is to try the allocation and intercept the

© Copyright IBM Corp. 1988, 2002 147

return and error code. Another way is to make a subsystem interface request using
the Subsystem Version Information SSI code (54). If JES is at the required level,
the returned information string contains CLIENT_PRINT=’YES’. If not, this string will
not appear at all. The information string will never contain CLIENT_PRINT=’NO’.

Comparing CTOKENs
At various times during your processing, you will need to compare CTOKENs.
Typically, you will do this when JES signals an event for a CTOKEN and you need
to find this token in your list so that you can take some kind of action based on the
event.

To compare one CTOKEN to another, you must not simply compare the entire 80
byte values. This is because under certain JES processing, CTOKEN equality is
based on a subset of the information in the CTOKENs matching while other
information in the CTOKENs could be different. IBM provides a macro IAZXCTKN
which you must use to compare CTOKENs. This macro determines which
information in two CTOKENs is significant and compares just this information. The
macro works in such a way that you never need to interpret any information inside
the CTOKEN.

Depending on the return code from the IAZXCTKN macro, you can determine
whether the two CTOKENs are the same, whether the first CTOKEN is less than
the second one, or whether the second CTOKEN is less than the first one.

IAZXCTKN also provides a special comparison function. At certain times, JES
signals events for an entire job. When this happens, the signal includes a job level
CTOKEN. Using IAZXCTKN, you can determine whether a CTOKEN for a data set
in which you are interested is covered by the job level CTOKEN that JES provides.

Job level CTOKENs contain no ordering information; therefore a job level CTOKEN
can be considered by IAZXCTKN to be ″equal″ or ″not equal″ to another CTOKEN
but never ″greater″ or ″less″ than another CTOKEN.

Refer to the book z/OS MVS Programming: Authorized Assembler Services Guide
for information about using the IAZXCTKN macro.

Obtaining Status for a Data Set
You can obtain status for a data set using the Extended Status subsystem interface
(SSI 80) code. To do this, you supply as STATCTKN the address of the CTOKEN
for the data set you are interested in and set the selection flag STATSCTK. When
you use the STATSCTK selection flag, you cannot use the STATSJBI selection flag,
and vice versa.

Refer to Chapter 3, “SSI Function Codes Your Program Can Request” on page 13
and SSI 80 for a detailed description of the Extended Status call.

Accessing a Data Set
You can access a data set using the SYSOUT Application Programming Interface,
SSI 79. You would do this in order to:

v Show the contents of the data set to the requesting client.

v Allow the client to delete a data set.

v Allow the client to release a data set from hold to print.

Print Interface

148 z/OS V1R4.0 MVS Using the Subsystem Interface

To request JES to perform a SAPI operation on a client data set, you supply as
SSS2CTKN the address of the CTOKEN for the data set you are interested in and
set the selection flag SSS2SCTK. When you use the SSS2SCTK selection flag, you
cannot use the SSS2SJBI selection flag, and vice versa.

When a data set is processed by a program written using SAPI, there is a
distinction between a data set that is selected for processing and a data set that is
selected for browsing. In the former case, the intention is to select the data set in
much the same way as it would be selected for a writer (such as an external writer),
which may or may not cause its state to be changed. In the latter case, the
intention is to not change its state at all. The main purpose for this distinction is to
prevent ″noise″ caused by unnecessary ENF signals.

You can set the flag SSS2SBRO when you know that the intention of a SAPI
access is to browse a data set. When this flag is on, JES will not issue any signals
for the SAPI access to this data set. When this flag is off JES will issue signals
whenever a data set with a CTOKEN is selected or deselected by a SAPI Put/Get
operation. Do not set this flag if you need to be informed of selects and deselects.

This flag controls signals for selects and deselects only. If a data set is purged by a
SAPI Put operation (for example, by turning off flag SSS2DKPE), a signal will be
issued even if SSS2SBRO is set.

You must use SAPI in order to suppress signals when accessing a data set for
browse. When a Process Sysout (PSO) application selects or deselects a data set
with a CTOKEN, a signal is always issued.

The SSS2SBRO flag is valid only for Put/Get requests.

Refer to Chapter 3, “SSI Function Codes Your Program Can Request” on page 13
and SSI 79 for a detailed description of SAPI.

Security
Since all SYSOUT allocations and SAPI calls are being done by you as the server,
preventing a client from having unauthorized access to another client’s data set is
your responsibility.

One way you can do this is by performing the dynamic allocation to create the
SYSOUT file under a security environment with the client’s identity. This is
accomplished by using the RACROUTE macro with REQUEST=VERIFY. Then,
when a client makes a request requiring you to make a SAPI SSI call, you would
use RACROUTE REQUEST=VERIFY with the requesting client’s user id to
establish a security environment for the requestor. As part of the SAPI processing,
JES makes authorization checks using the JESSPOOL security class.

Refer to the book z/OS Security Server RACROUTE Macro Reference for
information on using the RACROUTE macro.

This method requires your clients to be defined as users in your security product,
even if they never directly log on to your system. If this is not possible, you must
design your own security protocol.

Print Interface

Chapter 4. JES Client/Server Print Interface 149

Identifying a Requestor on a Header Page
JES typically has printers defined to print with a header page identifying the job
creating a SYSOUT data set.

However, the job information that prints on the header page is associated with the
job that created the data set. This ordinarily identifies the job that runs your server,
not the client that requested the printout. You would probably prefer that the client’s
identification print rather than the server’s in order to be able to tell one client’s
output apart from another’s.

In order to do this, you can use the IAZXJSAB macro. You could do something like
the following:
IAZXJSAB CREATE,JOBNAME=client_jobname,

USERID=client_userid,TYPE=SUBTASK

To make sure that the job identification does not persist beyond the requested data
set, you can delete the JSAB by making the following call:
IAZXJSAB DELETE,TYPE=SUBTASK

or you can update it with different user identification by making the following call:
IAZXJSAB UPDATE,JOBNAME=new_client_jobname,

USERID=new_client_userid,TYPE=SUBTASK

In all of these cases, you must use the parameter TYPE=SUBTASK, otherwise JES
will not recognize the requesting user identification correctly.

Refer to the book z/OS MVS Programming: Authorized Assembler Services Guide
for information on using the IAZXJSAB macro.

Listening for Events
During the course of JES operations, data sets and jobs are subject to changes for
various reasons. When such events occur for a client data set (for example, a data
set that was allocated with the DALRTCTK text unit) or a job containing at least one
client data set, JES issues an Event Notification (ENF) signal. The ENF number of
the signal is 58. The signal is issued only for data sets that have been allocated
using the DALRTCTK text unit.

To listen for this signal, you could do something like the following:
ENFREQ ACTION=LISTEN,CODE=58,EXIT=exit_address,XSYS=YES,

PARM=parameter_address,DTOKEN=end_token_address

Note: The XSYS=YES parameter is used because JES could be issuing signals on
a different processor from the one where your server runs.

To stop listening for this signal, you could do something like the following:
ENFREQ ACTION=DELETE,CODE=58,DTOKEN=end_token_address

The data area received by your listen exit from ENF is mapped by the IAZENF58
macro. You must include this macro in your program in order to use the data
supplied by the ENF signal. This data area contains the following information:

ENF58_LENGTH
Length of parameter list

Print Interface

150 z/OS V1R4.0 MVS Using the Subsystem Interface

ENF58_QUALIFIER
Qualifier code — defined below

ENF58_Q_PURGE
Data set was purged

ENF58_Q_SELECT
Data set was selected

ENF58_Q_DESELECT_PROCESSED
Data set was processed

ENF58_Q_DESELECT_NOT_PROCESSED
Data set is no longer selected, disposition was not changed

ENF58_Q_DESELECT_NOT_PROCESSED_HELD
Data set is no longer selected, disposition was not changed and data set is
held

ENF58_Q_DESELECT_ERROR
An error resulting in a system level hold occurred

ENF58_Q_EOD_OK
End of data set notification occurred — successful

ENF58_Q_EOD_ERROR
End of data set notification occurred — unsuccessful

ENF58_Q_JOB_CHANGE
Job-status change occurred

ENF_Q_TOKEN_CHANGE
Client token has changed

ENF58_SYS_HOLD
System hold reason — refer to IAZOHLD for possible values

ENF58_JES_NAME
JES2 Member Name / JES3 MAIN name

ENF58_REASON
Reason text

ENF58_CTOKEN
Data Set Client Token

ENF58_NEW_CTOKEN
New client token that should replace the CTOKEN for a TOKEN_CHANGE
ENF type

You should determine what action you need to take based on this event. For
example, if you receive a signal with ENF58_Q_PURGE it usually means that you
should delete from your list all information pertaining to the dataset with the
CTOKEN of ENF58_CTOKEN.

To take action on the CTOKEN, you must first go through your CTOKEN list and
issue IAZXCTKN macros, comparing ENF58_CTOKEN to CTOKENs from your list
until you find the CTOKEN specified in the signal in your list. If ENF58_QUALIFIER
is ENF58_Q_JOB_CHANGE, it means that ENF58_CTOKEN is a job level
CTOKEN and you must go through your entire list of CTOKENs until you have
identified, and taken action on, all data set level tokens covered by the job level
CTOKEN.

Print Interface

Chapter 4. JES Client/Server Print Interface 151

Notes:

1. When ENF58_QUALIFIER is ENF58_Q_JOB_CHANGE, the CTOKEN in
ENF58_CTOKEN is a job level CTOKEN. At all other times it is a data set level
CTOKEN.

2. When ENF58_QUALIFIER is ENF58_Q_TOKEN_CHANGE, the ENF58
parameter list contains a new CTOKEN and ENF58_LENGTH reflects the
existence of this new CTOKEN.

3. When an event with ENF58_Q_TOKEN_CHANGE is received, the CTOKEN in
your list should be replaced with the contents of ENF58_NEW_CTOKEN. This is
the only time that you should change the contents of a CTOKEN. Replacing this
CTOKEN does not change the ordering of the CTOKEN you previously had in
your list for this data set.

4. ENF58_NEW_CTOKEN is present only when ENF58 QUALIFIER is
ENF58_Q_TOKEN_CHANGE. ENF58_LENGTH is larger for this qualifier type
than it is for other types.

Refer to z/OS MVS Programming: Authorized Assembler Services Guide and z/OS
MVS Programming: Authorized Assembler Services Reference ENF-IXG for
information about using the ENFREQ macro and coding the listen exit.

Print Interface

152 z/OS V1R4.0 MVS Using the Subsystem Interface

Chapter 5. Setting Up Your Subsystem

This chapter describes planning considerations for setting up and writing your own
subsystem. When a directed request is made for a specific subsystem, the SSI
searches for the subsystem requested. If the SSI finds that the named subsystem
handles the requested function, the SSI passes control to the function routine.
When a broadcast request is made, the SSI checks every subsystem to see if the
subsystem handles the requested function. This search is done in the same order
that the subsystems are defined to MVS, with the exception that the primary job
entry subsystem (JES) is first. If the SSI finds that a subsystem handles the
requested broadcast function, the SSI passes control to the function routine. This
process is repeated for each subsystem that handles the requested function.

When you want to write your own subsystem, you must:

v Provide the routines to support the request for a function. These function routines
get control from the SSI. They may actually perform the function or may pass
control to other routines that you provide.

v Provide a subsystem address space (if required).

v Let MVS know that the subsystem exists (define the subsystem).

v Provide the information to the SSI that it will need to find your function routines
(initialize the subsystem).

v Provide accounting information parameters to your subsystem (if required).

Note: When writing your own subsystem you must also provide any control blocks
or resources that the subsystem requires for its own operation, which MVS
does not provide.

Function Routines/Function Codes
Based on what you want your subsystem to do, you must supply one or more
function routines. The same function routine can handle multiple function codes.
You must decide how many separate functions you need and identify each function
by a unique function code in the subsystem vector table (SSVT). The SSVT
identifies:
v The SSI function codes to which the subsystem responds
v The subsystem routines that process the supported functions.

The MVS-defined function codes your subsystem can support are described in
Chapter 7, “SSI Function Codes Your Subsystem Can Support” on page 179. If your
subsystem handles installation-defined directed requests, you must identify each
function using a function code from 236 to 255. These codes are not broadcast
functions. You can also subdivide installation-defined function codes by using
subtypes you identify by passing parameters in your SSOB function dependent
area.

If you plan to have your subsystem support the MVS-defined function codes, see
the specific function code descriptions for requirements on your function routine.
The sections that follow describe general considerations for all function routines you
write.

Environment
On entry to a function routine, the function routine must save registers using
standard save area conventions.

© Copyright IBM Corp. 1988, 2002 153

The register contents on entry to a function routine are:

Register Contents

Reg 0 Address of the SSCVT (mapped by the IEFJSCVT macro)

Reg 1 Address of the SSOB control block passed by the requestor. This is
explained in “Subsystem Options Block (SSOB)” on page 7.

Reg 13 Standard 18-word save area

Reg 14 Return address

Reg 15 Entry point address

On exit from a function routine, a function routine must restore registers 0 — 14 to
the contents on entry using standard exit linkage.

As you write your function routines, be aware of what state and key the function
routine must be in to do its work. Your function routine gets control in the key and
state of the requestor. If your routine requires that it be in a different key or state,
your routine must handle mode and state switching. However, you must reverse the
mode switch before returning control to the SSI because the SSI gets control back
in your routine’s key and state.

Address mode (AMODE) considerations are handled by the SSI system routines.
Other addressability considerations must be handled by the function routine. Any
addresses passed to an AMODE 24 function routine (including the save area) must
be below 16 megabytes. If the subsystem runs in a separate address space, the
function routine must establish cross memory space communication either by SRB
scheduling or cross memory instructions. For an explanation of using multiple
address spaces, see z/OS MVS Programming: Extended Addressability Guide.

The function routine can pass back some information when processing for the
request is complete. The information is put in fields in the control blocks that the
user passed to the SSI when the request was made. The control blocks (SSOB,
SSIB and SSOB function dependent area) are explained more fully in Chapter 2,
“Making a Request of a Subsystem” on page 7. The function routine must:
v Set the return code in the SSOBRETN field of the SSOB
v Put information (if required) in the SSOB function dependent area.

See Appendix A, “Examples — Subsystem Interface Routines” for coding examples
of function routines.

Recovery and Integrity
When you write a function routine, IBM recommends that you provide recovery in
case your function routine fails. Your recovery routine should indicate unsuccessful
processing, clean up any resources used, and return control to the SSI. You might
also want to disable one or more of your supported function codes. See “Disabling
Previously Supported Functions” on page 168 for more information.

Attention: Because there is no serialization used for updating the function codes
in the SSVT, other requests for supported functions might be coming in
asynchronously. The SSVT identifies:
v The SSI function codes to which the subsystem responds
v The subsystem routines that process the supported functions.

Setting Up

154 z/OS V1R4.0 MVS Using the Subsystem Interface

Therefore, do not delete a function routine from storage (because a task may be
using it) and do not delete the SSVT.

Placement of Function Routines
Your subsystem function routines must be addressable from any address space, as
the SSI gives control to the subsystem in the caller’s environment. To meet this
requirement, the following are the choices for placement of your function routines:

v Place your function routines in one of the data sets from which LPA (PLPA,
MLPA, or FLPA) is built. That is, those specified in the LPALSTxx, IEALPAxx, or
IEAFIXxx members of SYS1.PARMLIB.

v Place your function routines in one of the data sets specified in the LNKLSTxx
member of SYS1.PARMLIB. Note that if SYS1.PARMLIB member IEASYSxx
specifies LNKAUTH=APFTAB, this data set must also be defined in IEAAPFxx, or
in the APF section of SYS1.PARMLIB member, PROGxx.

The placement of your function routines influences the setting of the load-to-global
option that is used when building your SSVT or enabling functions with the
IEFSSVT macro. If you decide to place your function routines in LPALSTxx,
IEALPAxx, or IEAFIXxx, the load-to-global option has no effect. If you decide to
place your function routines in LNKLSTxx, you must specify the load-to-global
option. When set, this option causes the system to load the function routines into
pageable CSA. A subsystem can choose to place all of its function routines in LPA,
or in pageable CSA, or a combination of the two. See “Building the SSVT” on
page 166 or “Enabling Your Subsystem for New Functions” on page 168 for more
information.

Note: If you request load-to-global, the SSI, running under your task, issues a
LOAD macro with the end of memory (EOM) keyword set to YES. Function
routines that are loaded this way are deleted from storage if the home
address space of the requesting task ends. To protect the system, you must
deactivate your subsystem or disable all its function codes if the address
space ends. To do this, write a function routine that gets control for
broadcast function code 8 (end-of-address space). If the address space that
owns the function routine ends, invoke IEFSSVT to disable your subsystem’s
function codes or invoke IEFSSI to deactivate your subsystem. See
“Disabling Previously Supported Functions” on page 168 for information on
IEFSSVT and see “Deactivating Your Subsystem” on page 170 for
information on IEFSSI.

Do You Need a Subsystem Address Space?
When people think of a subsystem, they often think of JES2 or JES3. They usually
do not differentiate between the JES subsystem and the JES address space. The
subsystem and the address space, however, are not the same. It is just that the
JES subsystem was implemented with a requirement for an address space with the
same name as the subsystem.

A subsystem is not required to have its own address space, although many
subsystems do have a separate address space. Remember that the subsystem
routine is entered in the address space of the caller. Therefore, a major decision
you need to make is where you want the subsystem to reside: in common storage
or in its own address space.

Setting Up

Chapter 5. Setting Up Your Subsystem 155

As mentioned earlier, the code that gets control directly from the SSI must be
addressable from any address space. That function routine, however, can pass
control to your subsystem code that might reside in a separate address space.

If your subsystem requires minimal space, and your installation is not suffering from
present (nor anticipating potential) storage constraints for common storage, you can
keep all the routines in common storage. On the other hand, having a separate
address space is useful if the subsystem needs its own data areas. You can create
a separate address space by having your initialization routine use the ASCRE
macro, or by having your subsystem run as a started task. See z/OS MVS
Programming: Authorized Assembler Services Reference ALE-DYN for information
on the ASCRE macro.

Defining Your Subsystem
If you want to use dynamic SSI services, your subsystem must be defined to MVS
in one of the following ways:
v IEFSSNxx parmlib member (keyword format) processing during IPL
v IEFSSI macro invocation
v SETSSI system command invocation.

The maximum number of subsystems you can define is 32,767.

If you do not want to be able to use dynamic SSI services, your subsystem must be
defined to MVS at IPL time in the positional format of the IEFSSNxx parmlib
member.

See z/OS MVS Initialization and Tuning Reference for detailed information on the
syntax and rules for coding IEFSSNxx. See z/OS MVS Programming: Authorized
Assembler Services Reference ENF-IXG for information on the syntax and rules for
coding the IEFSSI macro. See z/OS MVS System Commands for information on the
syntax and rules for issuing the SETSSI system command.

There are some special things to think about when defining your subsystem,
including:
v Naming your subsystem
v Passing parameters
v The primary subsystem

Naming your subsystem

The name you use for your subsystems depends on how your subsystem is defined
to MVS. Use one of the following naming conventions:

v If your subsystem is defined to MVS through the IEFSSNxx parmlib member
processing at IPL, the subsystem name can be no more than four characters
long, beginning with an alphabetic character or #, @ or $. The remaining
characters can be alphabetic, numeric, or #, @, or $.

v If your subsystem is defined to MVS through the IEFSSI macro, the subsystem
name can be no more than four characters long, containing any character other
than blanks or nulls.

v If you subsystem is defined to MVS through the SETSSI command, the
subsystem name can contain any character other than blanks or nulls that is
valid for system commands. See z/OS MVS System Commands for more
information on the valid characters.

Setting Up

156 z/OS V1R4.0 MVS Using the Subsystem Interface

You cannot use the following names for your subsystems:
v APPC
v ASCH
v MSTR
v OMVS
v STC
v SYS
v TSO

It is a good idea to use a meaningful name for your subsystem. When debugging a
problem, it is much easier to recognize a meaningful name. Also, check for the
subsystem names that are currently in use by IBM-supplied and vendor-supplied
products.

Note: Since subsystems can be added after IPL, it is difficult to determine which
unique name to use for a subsystem. You can use the query request of the
IEFSSI macro to find the names of existing subsystems to ensure that your
subsystem name is unique.

Passing parameters

If you want to pass parameters to the initialization routine, you can list them in one
of the following:
v IEFSSNxx parmlib member during IPL
v IEFSSI macro
v SETSSI system command.

See “Initializing Your Subsystem” on page 164 for more information.

The primary subsystem

For work to be done, MVS requires that at least one subsystem be defined as a job
entry subsystem (JES) to bring jobs into the system. The JES in fact is called the
primary subsystem. You can select either JES2 or JES3. If you do not specify an
IEFSSNxx member in SYS1.PARMLIB, MVS attempts to use the system default
member, IEFSSN00. IEFSSN00, as supplied by IBM, contains the definition for the
default primary job entry subsystem, JES2.

If you attempt to IPL without specifying an IEFSSNxx member and IEFSSN00 is not
present or does not identify the primary subsystem, the system issues message
IEFJ005I (see “Handling Initialization Errors” on page 239) and prompts the operator
for the primary subsystem.

For an IPL, do not define a subsystem more than once in a combination of
IEFSSNxx members that can be used together or within a single member. (The
same subsystem can appear in two different IEFSSNxx members when the
members will not be used together.) In general, if MVS detects a duplicate name,
both of the following are true:
v MVS does not define the duplicate subsystem
v MVS does not give control to the initialization routine.

The system issues the following message:
IEFJ003I: DUPLICATE SUBSYSTEM subname NOT INITIALIZED

Setting Up

Chapter 5. Setting Up Your Subsystem 157

Providing a Routine to Initialize Your Subsystem
When writing your own subsystem you need to provide a routine to initialize your
subsystem. You need to decide what your subsystem initialization routine will do
and how you will initialize your subsystem.

What Your Subsystem Initialization Routine Can Do
One of the things that you must do to initialize your subsystem is to tell the SSI
what function codes and function routines your subsystem supports. This is done by
building an SSVT. The SSI provides the IEFSSVT macro to build your subsystem’s
SSVT. See “Building the SSVT” on page 166 for more information.

After building your subsystem’s SSVT, your subsystem initialization routine must let
MVS know that your subsystem is active and ready to accept SSI requests.

The following are examples of other things your subsystem initialization routine can
do:

v It can tell MVS that your subsystem requires the services of a JES.

v It can define command prefix characters for your subsystem.

v It can create and anchor subsystem specific control blocks for use by its function
routines.

v It can specify whether the subsystem is to respond to the SETSSI command.

For more information, see “Initializing Your Subsystem” on page 164.

How to Initialize Your Subsystem
There are two ways to initialize your subsystem:
v Specifying an initialization routine
v Using the START command

You can also combine these methods, doing part of the setup through an
initialization routine, then completing initialization through a START command.

Specifying an Initialization Routine
You can optionally specify the name of your subsystem initialization routine when
you define your subsystem. See “Defining Your Subsystem” on page 156 for the list
of ways that subsystems are defined to MVS. If the functions the subsystem
supplies might be needed during the IPL process, define your initialization routine in
IEFSSNxx. In this case, the initialization routine handles all the preparation to
ensure the subsystem is active.

Using the START Command
If the subsystem functions are not needed until a later time, you can use the START
command to initialize your subsystem. See z/OS MVS System Commands and
z/OS MVS JCL Reference for more information on the START command.

Figure 16 on page 159 shows how you can initialize your subsystem either by
specifying an initialization routine or by using the START command.

Setting Up

158 z/OS V1R4.0 MVS Using the Subsystem Interface

Starting Your Subsystem With the START Command: You can initialize your
subsystem with the START command and run under either a job entry subsystem
(JES) or the MSTR subsystem.

See “Subsystem Identification Block (SSIB)” on page 8 for more information on
started tasks.

MVS uses one of the following naming conventions to identify the name of the
subsystem being started:
v START CAW — MVS interprets CAW as the subsystem name
v START CAW.CAW1 — MVS interprets CAW1 as the subsystem name
v START CAW,JOBNAME=CAW2 — MVS interprets CAW2 as the subsystem

name.

In each case, MVS looks for the matching subsystem name that was previously
defined to MVS.

If you want to start multiple instances of a specific subsystem using different
names, you can, for example, define the following subsystems:
v CAW — the first instance of the CAW subsystem
v CAW1 — the second instance of the CAW subsystem
v CAW2 — the third instance of the CAW subsystem

and then specify the following with the START command:
v START CAW,JOBNAME=CAW
v START CAW,JOBNAME=CAW1
v START CAW,JOBNAME=CAW2

For more information about started tasks, see z/OS MVS JCL Reference.

Build SSVT

Activate
Subsystem

Initialize
Subsystem

(Initialization Routine
or Operator

START command)

Respond
to

Command

IEFSSVT

IEFSSI

IEFSSI

Figure 16. Initializing Your Subsystem

Setting Up

Chapter 5. Setting Up Your Subsystem 159

Passing Accounting Parameters to Your Subsystem
SMF allows your subsystem to receive a set of accounting parameters through the
use of the SUBPARM option in the SMF parmlib member (SMFPRMxx). Some
examples of parameters you can receive are:
v Record type number for SMF records
v Recording interval time
v Level of SMF recording (high, medium, low, or none).

The syntax of the option allows the installation to specify a subsystem name and a
set of parameter values (up to 60 characters in length) that are associated with that
subsystem.

See z/OS MVS Initialization and Tuning Reference for more information on the SMF
parmlib member and the SUBPARM option.

Processing the SUBPARM Option
The processing of SUBPARM involves the following:
v Initializing the SMF parameters
v Initializing the subsystem
v Modifying the SUBPARM value.

Initializing the SMF Parameters
During SMF initialization, the SMF parameter that the installation specified are
processed and the requested actions are taken. For example, your installation can
specify as parmlib options any of the following:
v Perform SMF recording
v Activate specific SMF exits.

SMF parameter initialization includes processing the SUBPARM option. That is, the
value the installation specified must be stored in an SMF storage area for the
subsystem’s use.

Initializing the Subsystem
During subsystem initialization, the subsystem must request the SMF accounting
parameter values from SMF. The subsystem uses the SMFSUBP macro to retrieve
the parameter value that the installation requested. If the macro request is
successful, the system returns a pointer to the specific parameter value. The
system returns a non-zero return code if errors are encountered during the macro’s
processing. See z/OS MVS System Management Facilities (SMF) for more
information on the SMFSUBP macro.

Modifying the SUBPARM Value
After subsystem initialization is complete, the installation can modify the SUBPARM
option value for a specified subsystem by using:
v An SMF console command
v An SMF macro.

Using an SMF Console Command
To change the SUBPARM option value with an SMF console command, use either:
v The SETSMF command
v The SET SMF=xx command.

When either of these commands is issued and causes a change to the value of the
SUBPARM option for a selected subsystem, the SMF SUBPARM Option Change
call (SSI function code 58) is issued to notify the specified subsystem of the

Setting Up

160 z/OS V1R4.0 MVS Using the Subsystem Interface

change. See “SMF SUBPARM Option Change Call — SSI Function Code 58” on
page 221 for a description of this function code. The SSI function code 58
parameter list does not include the changed parameter value. The subsystem can
issue the SMFSUBP macro to retrieve the updated parameter values and modify its
processing.

Using an SMF Macro
To change the SUBPARM option value with an SMF macro, the subsystem uses the
SMFCHSUB macro. See z/OS MVS System Management Facilities (SMF) for more
information on the SMFCHSUB macro.

Note: Changes made by the SMFCHSUB macro do not cause SSI function code
58 to be invoked.

Example
The following steps show how an installation can pass accounting parameters to
the subsystem.

v The SMF parmlib member used at SMF initialization contains:
SUBPARM(ABCD(ONESETOFPARMS))

v During the initialization of the ABCD subsystem, ABCD issues the SMFSUBP
macro to retrieve the initial parameter information.

– During this point in the processing, the subsystem does whatever it is
specified to do by checking the contents in the parameter area.

– It then continues with its initialization.

v If the installation changes the value of the parameter, either by using the SET
SMF=xx command to change parmlib members, or by using the SETSMF
command as follows:

SUBPARM(ABCD(ANOTHERSETOFPARMS))

to change the value for the SUBPARM, the result is that SMF issues the SMF
SUBPARM Option Change call (SSI function code 58) to the ABCD subsystem to
signal the change.

v Subsystem ABCD could be any of the following:
– Undefined, which causes an SSI error
– Not enabled for the function code, which means no action
– Enabled for the function code, which invokes the subsystem’s routine for the

function code.

v The function routine uses the SMFSUBP macro to retrieve the updated
parameter information.

v At this point in the processing, the subsystem processing depends on the
contents of the parameter area, which will probably update controls for the
subsystem.

Setting Up

Chapter 5. Setting Up Your Subsystem 161

Setting Up

162 z/OS V1R4.0 MVS Using the Subsystem Interface

Chapter 6. Services for Building and Using Your Subsystem

This chapter describes MVS services that are provided to help you build and use
your subsystems when performing the following tasks:
v Adding your subsystem
v Initializing your subsystem
v Defining what your subsystem can do
v Changing what your subsystem can do
v Activating your subsystem
v Deactivating your subsystem
v Swapping subsystem functions
v Storing and retrieving subsystem-specific information
v Defining subsystem options
v Querying subsystem information
v Maintaining information about your subsystem

Adding Your Subsystem
To dynamically add your subsystem, you can use:
v The keyword format IEFSSNxx parmlib member
v The IEFSSI macro
v The SETSSI command

When you add and define a subsystem, you make the subsystem’s name known to
the system. Previously, the only way to add a subsystem was to add and define it in
the positional format IEFSSNxx parmlib member, which meant that an addition of a
new subsystem required you to re-IPL the system.

You can still add a subsystem with the positional format IEFSSNxx parmlib member;
however, you cannot use the dynamic SSI services if you add a subsystem this
way.

Using the IEFSSNxx Parmlib Member
Both the positional and the keyword format IEFSSNxx parmlib member allow the
installation to specify the following information about a subsystem:
v The subsystem name
v The subsystem initialization routine
v The parameters to be passed to the initialization routine
v For the primary subsystem, whether it should be automatically started during

master scheduler initialization

Use the keyword format IEFSSNxx parmlib member to dynamically add a
subsystem, which allows you to specify the following additional information about a
subsystem during subsystem definition processing:
v The console to which messages issued by the SSI will be directed.
v The console to which messages issued by the subsystem initialization routine will

be directed.

The installation or subsystem can use the CONSNAME parameter of an IEFSSNxx
parmlib entry to specify a console name. The SSI does not verify that the named
console is defined or active. If you specify a console name that is not valid, the
standard write-to-operator processing occurs. If you do not specify a console name,
messages are directed to the master console.

© Copyright IBM Corp. 1988, 2002 163

The console name is passed to the subsystem initialization routine in the parameter
list mapped by IEFJSIPL. The initialization routine can use the console name when
issuing messages.

Specifying a console name is important only during subsystem initialization. After
subsystem initialization, SSI messages are issued in response only to dynamic SSI
commands; such as, SETSSI and DISPLAY SSI. These messages are issued to the
console from which the command was issued, or in the case of the DISPLAY SSI
command, to the specified console, if any.

See z/OS MVS Initialization and Tuning Reference for the syntax of the keyword
format IEFSSNxx parmlib member.

Using the IEFSSI macro
Use the add request of the IEFSSI macro to dynamically add a subsystem and
allow you to use dynamic SSI services. As with using the IEFSSNxx parmlib
member, the installation or subsystem can use the CONSNAME parameter of the
IEFSSI macro to specify a console name.

Using the SETSSI command
Use the SETSSI ADD command to dynamically add a subsystem and allow you to
use dynamic SSI services. As with using the IEFSSNxx parmlib member and the
add request of the IEFSSI macro, the installation or subsystem can use the
CONSNAME keyword of the SETSSI command to specify a console name.

Initializing Your Subsystem
If you are defining your own subsystem, you can code an initialization routine and
have control pass to that routine by specifying the name of the initialization routine
when you define your subsystem. You can define parameters to be passed to your
initialization routine.

The initialization routine is linked to in supervisor state and key zero. On entry to
the routine, there are no locks held and register 1 points to a two-word parameter
list:

Word Contents

One Address of the SSCVT (mapped by the IEFJSCVT macro).

Two Address of the subsystem initialization parameter list (JSIPL,
mapped by IEFJSIPL). See z/OS MVS Data Areas, Vol 3
(IVT-RCWK) for the format of JSIPL.

Figure 17 on page 165 shows the input to the initialization routine when your
initialization routine gets control from the system.

Services

164 z/OS V1R4.0 MVS Using the Subsystem Interface

Coding the Initialization Routine
Before coding your initialization routine, consider:

v You can set up a control block structure for your subsystem by building a control
block to hold any necessary information and anchoring that control block with the
put/get function of the IEFSSI macro. See “Storing Subsystem-specific
Information” on page 172 and “Retrieving Subsystem-specific Information” on
page 172 for more information on the put/get function of the IEFSSI macro. If, for
example, you are planning to use cross memory, your subsystem control block
can point to your PC table.

v If you have chosen to have your subsystem run in a separate address space, do
not activate the subsystem until the address space is started unless you have
made some other provisions for handling requests.

v When you initialize your subsystem with the START command, you must
consider whether you want to start your subsystem:

– Under the job entry subsystem (JES)

– Under the master subsystem.

If the operator specifies the SUB=keyword on the START command, the system
uses the subsystem that the operator specifies.

If the operator does not specify the SUB=keyword on the START command, the
system defaults to the subsystem that is specified on the REQDSUB parameter
of the options function of the IEFSSI macro, or to the MSTR subsystem, if the
operator does not specify the REQDSUB parameter of the options function or
does not use the options function at all. See “Defining Subsystem Options” on
page 172 for more information on the options function of the IEFSSI macro.

v Your initialization routine determines whether the subsystem can respond to the
SETSSI command by using the options function of the IEFSSI macro. See z/OS
MVS System Commands for more information on the SETSSI command.

v Your initialization routine must be reentrant if it is used by multiple instances of
your subsystem, and must reside in a library specified by LNKLST or LPA.

v Your initialization routine must be APF-authorized.

v Your initialization routine is entered in key 0 and supervisor state.

v Your initialization routine can have any addressing mode (AMODE) and any
residency mode (RMODE).

PA RM LIST

SSC VT

Regist er 1

Subsyst em Initializat ion Parm list

Figure 17. Input to the Initialization Routine

Services

Chapter 6. Services for Building and Using Your Subsystem 165

v Your initialization routine should issue messages to explain unsuccessful
processing using the console information passed in the JSIPL parameter list.

v Your initialization routine should use standard linkage conventions.

v Your initialization routine can define command prefix characters for your
subsystem.

IBM recommends that you use the command prefix facility (CPF) to register your
valid command prefix characters. CPF is described in z/OS MVS Programming:
Authorized Assembler Services Guide.

v The environment your initialization routine runs in depends upon the way your
subsystem is defined. If your subsystem is defined by:

– The keyword format of the IEFSSNxx parmlib member, your initialization
routine runs in the master scheduler address space, under a permanent task.

– The SETSSI command, your initialization routine runs in the master scheduler
address space, under a transient task.

– The IEFSSI macro, your initialization routine runs in the address space and
under the task of the issuer of the IEFSSI macro.

“Example 1 — Subsystem Initialization Routine (TSYSINIT)” on page 245 shows a
coding example of a sample initialization routine.

Defining What Your Subsystem Can Do
To define what your subsystem can do, you can use the REQUEST=CREATE
parameter of the IEFSSVT macro to build an SSVT for your subsystem.

Note: IEFSSVT macro services are available only to dynamic subsystems.
However, other subsystems can use the IEFJSVEC service. See Appendix B,
“Using IEFJSVEC with Your Subsystem” on page 259 for more information
on IEFJSVEC.

Building the SSVT
The REQUEST=CREATE parameter of the IEFSSVT macro allows you to build an
SSVT for your subsystem. The IEFSSVT macro allows users to specify function
routines by address rather than requiring the SSI to load the routines. This is useful
if the subsystem wants to load its function routines into global storage, but does not
want the routines to be deleted if the address space ends. In this case, the
subsystem can perform a load-to-address, rather than a standard load, and pass
the addresses to the IEFSSVT macro. See z/OS MVS Programming: Authorized
Assembler Services Reference LLA-SDU for more information on the LOAD macro.

When preparing to build your subsystem’s SSVT, consider:

v When you want to invoke the IEFSSVT macro. You can invoke the IEFSSVT
macro either through a subsystem initialization routine or through a subsystem
routine invoked during START command processing, as described under
“Providing a Routine to Initialize Your Subsystem” on page 158.

v Which common storage subpool your subsystem’s SSVT is to be built in. Note
that the system uses the mode and key of the caller to access the SSVT and
invoke the function routines. Therefore, the storage subpool specified for the
SSVT must be a common subpool. See z/OS MVS Programming: Authorized
Assembler Services Guide for more information on selecting a common storage
subpool.

v What are the maximum number of function routines you expect the subsystem to
need. The maximum number of function routines you specify applies to the

Services

166 z/OS V1R4.0 MVS Using the Subsystem Interface

function routines you define on this build request, and also to any function
routines that you define when enabling or disabling functions with the IEFSSVT
macro.

v What are the actual number of function routines you want to specify on the
current request.

v What is the name or address of each function routine and the function code(s) it
supports.

v Where the subsystem function routines are to reside. See “Placement of Function
Routines” on page 155 for more information.

Inputs

Before invoking the IEFSSVT macro, the subsystem must use the IEFSSVTI macro
to create a table that relates function routines and the function codes they support.

The IEFSSVTI macro can do any one of the following:
v Create a static function routine input table
v Reserve dynamic storage for a function routine input table
v Copy a static table to dynamic storage
v Modify a function routine input table in dynamic storage

A static function routine input table is used when all the information required to build
the SSVT is known at compile time.

IEFSSVTI does not attempt to verify that its caller is a dynamic subsystem.
IEFSSVTI can be used only in conjunction with IEFSSVT.

Outputs

When control returns to the caller of the IEFSSVT macro create request, the
OUTTOKEN parameter contains a token that identifies the SSVT that was created.
Use this token when activating or deactivating the subsystem with the IEFSSI
macro, or when modifying the SSVT with the enable, disable, or exchange request
of the IEFSSVT macro.

A subsystem can have a maximum of two SSVTs created with the create request of
the IEFSSVT macro. A create request fails if the maximum number of vector tables
already exists.

Changing What Your Subsystem Can Do
To change what your subsystem can do, you can use the IEFSSVT macro to:
v Enable your subsystem for new functions - enable request
v Disable a previously supported function - disable request
v Associate a new function routine with a supported function code - exchange

request

The caller of either the enable, disable or exchange request can use the INTOKEN
parameter of the IEFSSVT macro to specify a token to identify the subsystem
vector table that is to be modified. You can get the INTOKEN parameter by issuing
the create request of the IEFSSVT macro. If you do not specify a token, the request
applies to the active subsystem vector table (the subsystem vector table currently in
use). In this case, the request fails if there is not an active subsystem vector table.
You can specify the function routines in the subsystem vector table by name or by
address.

Services

Chapter 6. Services for Building and Using Your Subsystem 167

Another way to change what your subsystem can do is to use the swap request of
the IEFSSI macro. See “Swapping Subsystem Functions” on page 171 for more
information.

Enabling Your Subsystem for New Functions
You can use the enable request of the IEFSSVT macro to:

v Dynamically add one or more new function routines, and, for each function
routine, one or more function codes that the function routine is to support.

When preparing to enable additional function routines and function codes,
consider:

– When you will be invoking IEFSSVT.

– What are the actual number of function routines your subsystem currently
supports.

To dynamically add more function routines to your subsystem, the actual
number of function routines your subsystem currently supports must be less
than the maximum number of function routines that was specified when your
subsystem’s SSVT was built.

– What is the name or entry point address of each additional function routine
and the function codes it is to support.

– Where your subsystem function routines are to reside. See Chapter 5, “Setting
Up Your Subsystem” on page 153 for more information on where your function
routines can reside.

v Dynamically associate one or more function codes with an existing function
routine. This function routine might have been specified on the original build
SSVT request or might have been added by a previous enable request.

When preparing to enable additional function codes, consider:

– When you will invoke IEFSSVT.

– Which existing function routines will support which additional function codes.

Note: IEFSSVT macro services are available only to dynamic subsystems.
However, other subsystems can use the IEFJSVEC service. See Appendix B,
“Using IEFJSVEC with Your Subsystem” on page 259 for more information
on IEFJSVEC.

Inputs

Before invoking the IEFSSVT macro, the subsystem must use the IEFSSVTI macro
to create a table that relates function routines and the function codes they support.

Disabling Previously Supported Functions
You can use the disable request of the IEFSSVT macro to dynamically disable a
function code so that your subsystem no longer gets control for that function.
Disabling a function is in effect a ″logical delete″.

Attention: Because there is no serialization on updating the table in the SSVT,
other requests for the supported functions might be coming in asynchronously.
Therefore, it is important to not remove the function routines from storage.

When preparing to disable one or more function codes, consider:
v When you will be invoking IEFSSVT.
v Which of the existing function codes are no longer supported.

Services

168 z/OS V1R4.0 MVS Using the Subsystem Interface

Inputs

Before invoking the IEFSSVT macro, the subsystem must use the IEFSSVTI macro
to create a table that relates function routines and the function codes they support.

Unlike the enable request, the disable request does not use the name or address of
the function routines in the subsystem vector table when disabling function codes. It
uses only the function code itself.

If possible, the SSI reclaims the space in the subsystem vector table occupied by
the function routines associated with the disabled function codes. If a function
routine does not support any remaining function codes, the SSI makes its
subsystem vector table space available for reuse in subsequent enable requests.

Associating a New Function Routine with a Supported Function Code
You can use the exchange request of the IEFSSVT macro to associate the function
routine with a supported function code so that the new function routine gets control
for that function.

Inputs

Before invoking the IEFSSVT macro, the subsystem must use the IEFSSVTI macro
to create a table that relates function routines and the function codes they support.

If possible, the SSI reclaims the space in the subsystem vector table occupied by
the function routines associated with the disabled function codes. If a function
routine does not support any remaining function codes, the SSI makes its
subsystem vector table space available for reuse in subsequent enable requests.

Activating Your Subsystem
To activate your subsystem, you can use:

v The IEFSSVT macro to create an SSVT to define the subsystem’s response to
the function requests.

v The IEFSSI macro to inform the system that the subsystem is ready to accept
function requests.

Using the IEFSSVT macro
Use the create request of the IEFSSVT macro to build the SSVT. See “Building the
SSVT” on page 166 for information on building the SSVT.

Using the IEFSSI macro
Use the activate request of the IEFSSI macro to activate your subsystem.

Note: You can use the activate request to activate SSVTs that were built with the
create request of the IEFSSVT macro.

The subsystem usually issues the activate request at initialization to activate the
subsystem, since the subsystem handles building the vector table. However, the
system operator can use also use the SETSSI ACTIVATE command, if the
subsystem enabled the SETSSI ACTIVATE command. See z/OS MVS System
Commands for more information on the SETSSI ACTIVATE command and “Defining
Subsystem Options” on page 172 for more information on using the IEFSSI options
service to determine the subsystem’s response to the SETSSI command.

Services

Chapter 6. Services for Building and Using Your Subsystem 169

Inputs

The activate request provides for the specification of an input token that represents
the SSVT to be used to activate the subsystem. This is the token returned to the
caller of the create request when the SSVT is built.

The SETSSI ACTIVATE command does not accept a corresponding input, because
the system operator cannot manipulate vector tables and does not have access to
the tokens.

Considerations
When activating your subsystem, consider:

v The activate request fails if a valid SSVT has not been defined for the
subsystem. A valid SSVT is one that has been built as described in “Building the
SSVT” on page 166.

v A subsystem can have a maximum of two SSVTs defined to the SSI at any time.
Only one of the SSVTs can be active or both SSVTs can be inactive (not
currently in use to process requests). An activate request fails if the subsystem is
already active.

If more than one vector table exists, the SSI determines which vector table it uses
to activate the subsystem as follows:

v If activating the subsystem through the IEFSSI macro, the SSI uses the vector
table identified by the vector table token specified with the INTOKEN parameter.

v If activating the subsystem through the SETSSI command or if a vector table
token is not specified with the IEFSSI macro, the SSI uses the most recently
active vector table.

v If none of the vector tables have ever been active, the SSI uses the last vector
table created.

v If the SSI does not manage the vector table, the request fails.

Reactivating a Subsystem after Deactivation
Use the activate request or the SETSSI ACTIVATE command to reactivate a
deactivated subsystem. A subsystem can be activated, deactivated and reactivated
as many times as is necessary.

Deactivating Your Subsystem
To deactivate your subsystem, you can use either:
v The IEFSSI macro
v The SETSSI DEACTIVATE command.

Use the deactivate request of the IEFSSI macro or the SETSSI DEACTIVATE
command to deactivate your subsystem so that your subsystem can suspend
operations or stop responding to SSI function requests. The SSI stops routing
requests, including broadcast requests, to the subsystem when it receives the
deactivation request or command. However, there may be outstanding function
requests that have not completed. Since it is not possible to determine when the
outstanding requests complete, subsystems must not attempt to delete function
routines or other resources that might still be in use after either the deactivate
request or SETSSI DEACTIVATE command has been issued.

Note: If a job requires the use of paired subsystem function requests, such as,
allocate/unallocate or open/close, the job may not end as expected if the
subsystem processing these requests is deactivated when the first request of

Services

170 z/OS V1R4.0 MVS Using the Subsystem Interface

the pair has been processed but the second has not. The SSI cannot
determine if this situation exists. It is both the installation’s and the
subsystem’s responsibility to control the job sequence and subsystem
deactivation requests to avoid potential problems.

Outputs

The deactivate request returns a vector table token to its caller in the location
identified by the optional OUTTOKEN parameter. The token represents the SSVT
that has been deactivated. You can use the token in subsequent activate requests,
if the same set of functions is supported when it is reactivated. The vector table
token is output only. A deactivate request always applies to the active subsystem
vector table.

A deactivate request or command is processed only if the target subsystem is
dynamic, even if the active vector table is not managed by the SSI. In this case, the
output token contains a zero and the request receives the IEFSSI_WARNING (4)
return code.

Note: If the subsystem does not have vector tables managed by the SSI, the
subsystem cannot be reactivated dynamically.

Swapping Subsystem Functions
A subsystem can maintain two subsystem vector tables. The two tables can
describe different sets of functions to which the subsystem responds or identify
different function routines to be invoked for the same function codes.

A subsystem would find it useful to maintain two subsystem vector tables if, for
example, a subsystem must quiesce operations. This way, a subsystem can keep
one full-function vector table and a second limited-function vector table, and swap
so that it can continue to support some minimum set of function while shutting
down.

The swap request of the IEFSSI macro allows the subsystem to deactivate the
active vector table and activate the inactive table in a single operation. The swap
request eliminates the need for separate deactivate and activate requests, which
would result in a period of time when the subsystem cannot respond to requests.

Inputs

The swap request allows the user to specify a subsystem vector table token on
input. The input token, which is named with the INTOKEN parameter, identifies the
vector table that is to be activated (with the activate request or command). If
INTOKEN is not specified, the inactive (previously created) vector table is activated.

Outputs

The swap request allows the user to specify a subsystem vector table token on
output. On completion of the swap, the output token, which is named with the
OUTTOKEN parameter, identifies the outgoing (previously active) vector table.

If the subsystem is initially inactive, the swap request receives the
IEFSSI_WARNING (4) return code and is treated as an activate request. The output
token identified with the OUTTOKEN parameter contains a zero. If the outgoing

Services

Chapter 6. Services for Building and Using Your Subsystem 171

(initially active) vector table is not managed by the SSI, the output token contains a
zero and the request receives the IEFSSI_WARNING return code.

Storing and Retrieving Subsystem-specific Information
To store and retrieve subsystem-specific information, you can use the IEFSSI
macro. A subsystem or a subsystem initialization routine needs to be able to pass
information to the subsystem’s function routines. If the subsystem code and its
function routines are in separate load modules or run in separate address spaces,
there may be no direct way for the subsystem to communicate with its function
routines. The store and retrieve services provide a way for subsystems to store and
retrieve subsystem-specific information and pass that information between
subsystem components.

Storing Subsystem-specific Information
Use the put request of the IEFSSI macro to store subsystem-specific information.
The put service allows a subsystem to store a total of 8-bytes of subsystem-specific
information in two non-contiguous 4-byte fields, which are identified by the
SUBDATA1 and SUBDATA2 parameters. The user can store the data in either or
both of the two fields on a single invocation of the put service.

A typical use of the put service is to store a pointer to a subsystem-specific control
block, which the subsystem initialization routine created and made available for use
by the subsystem function routines.

IBM recommends that your subsystem create and anchor control blocks to store
subsystem data, even if the stored data is small enough to fit within the two fields
provided. This lets your subsystem store more information at a later time. In
addition, the information stored using this service does not reside in fetch-protected
storage. However, the subsystem can create its control block in a fetch-protected
subpool.

Retrieving Subsystem-specific Information
Use the get request of the IEFSSI macro to retrieve subsystem-specific information.
The get service allows a subsystem to retrieve subsystem-specific information that
was stored using the put request. The retrieved information, which is identified by
the SUBDATA1 and SUBDATA2 parameters, is the information that was originally
identified by the corresponding put service parameter.

Defining Subsystem Options
To define subsystem options, you can use the IEFSSI macro. The options request
allows a subsystem to specify:
v Whether it responds to the SETSSI command
v The subsystem (MSTR or primary) under which the subsystem is to be started.

Use

You can invoke the options request more than once for a single subsystem. The
most recent invocation of the service determines the characteristics of the
subsystem. The first time the service is invoked, the defaults described in the
IEFSSI macro are effective for parameters that are not specified. See z/OS MVS
Programming: Authorized Assembler Services Reference ENF-IXG for more
information on the IEFSSI macro. For subsequent invocations, characteristics
corresponding to omitted parameters retain their most recent value. For example, if

Services

172 z/OS V1R4.0 MVS Using the Subsystem Interface

the first invocation does not specify the COMMAND parameter, the default of
COMMAND=NO is used. However, if the first invocation specifies COMMAND=YES
and a second invocation does not specify the COMMAND parameter, the
subsystem continues to respond to the SETSSI command as specified by the first
invocation.

Responding to the SETSSI Command
The system does not process the SETSSI command directed to subsystems that
have not explicitly authorized the commands, because existing subsystem were not
designed for the possibility of dynamic manipulation by commands. The system
may be disrupted if these subsystems are manipulated unexpectedly by commands.

Starting Your Subsystem Under the Primary Subsystem
A subsystem may require the services of the primary subsystem when being
started. For example, it may require the primary subsystem to provide the use of
subsystem data sets or an internal reader. The options service specifies whether
the subsystem being added requires the primary subsystem, and is intended for use
in a subsystem initialization routine.

If the START command does not specify the subsystem under which the target
subsystem should start, the system uses the information specified with the
REQDSUB parameter of the options request.

Querying Subsystem Information
To query subsystem information, an application can use the IEFSSI macro or an
operator can use the DISPLAY SSI command. The query request allows either an
application or the operator to query the following information for all subsystems
defined to the SSI:
v The subsystem name
v If the subsystem is dynamic or not dynamic
v If the subsystem is the primary subsystem
v If the subsystem is active or inactive
v If the subsystem is dynamic, whether it accepts or rejects dynamic SSI

commands
v If the subsystem is active, which function codes it supports.

An application can also query the following additional information:

v The number of vector tables associated with the subsystem, with a maximum of
two vector tables.

v The following information for each associated vector table:

– If the vector table is managed by the SSI. A vector table managed by the SSI
is a vector table created with the IEFSSVT REQUEST=CREATE macro.

– A locator. This locator is a token if the vector table is managed by the SSI and
is an address if the vector table is not managed by the SSI.

– If the vector table is active.

– The function codes supported by the vector table.

This information represents a snapshot of the subsystems defined to the SSI when
you process the query request.

To obtain information about the primary subsystem without knowing its name, use
the query request and specify a subsystem name of !PRI.

Services

Chapter 6. Services for Building and Using Your Subsystem 173

Using the Subsystem Query Request of the IEFSSI Macro
The query request of the IEFSSI macro is the only service provided by this macro
that does not require the caller to be authorized.

Inputs

The SSI obtains the storage necessary to return the query request information,
because the issuer of the query request cannot determine in advance how much
information will be returned. The issuer of the query request can use the
WORKASP parameter to specify the subpool in which the SSI can obtain the
storage. The query request fails if the SSI is unable to obtain enough storage.
Unauthorized callers are limited to unauthorized subpools.

The query request returns information either for a single subsystem or for all
subsystems matching the pattern specified with the SUBNAME parameter. The
pattern can contain the following wildcard characters:
v An asterisk (’*’) — matches zero or more characters
v A question mark (’?’) — matches one character.

Outputs

The mapping macro IEFJSQRY maps the output returned by the query request.

If the SSI obtains the storage it needs to use the query request, the SSI returns the
address of the output work area in the variable that the WORKAREA parameter
identifies. The JQRYLEN field mapped by the IEFJSQRY macro contains the length
of the returned storage. Upon completion, the issuer of the IEFJSQRY macro must
free the returned storage. You should have established a recovery routine to free
the returned storage in case your program ends abnormally. IBM recommends you
use task-oriented or job-oriented storage to ensure that the storage is released
upon task or job completion.

If you request information about multiple subsystems, the output lists the
information in broadcast order. That is, the subsystems are listed in the same order
in which SSI broadcast processing invokes them. For each subsystem, the IEFSSI
query request returns information about all associated vector tables managed by
the SSI, active or not. For vector tables that are not managed by the SSI, the
system locates only the active vector table and returns information about that vector
table only.

A query request may fail to return information about some subsystems. If a
subsystem is defined after IPL by directly manipulating the SSI control blocks and
the definition either occurs during the processing of the query request or is not
correctly completed, some subsystems may not be represented in the response to
the query request.

Using the Display SSI Command
The DISPLAY SSI command displays status information about all subsystems
defined to the SSI. You can request information for all subsystems at once or for
those subsystems which meet the criteria specified by the filters used when issuing
the DISPLAY SSI command. You can use filters to limit the information displayed to:

v One particular subsystem or those subsystems whose names match a specified
pattern

v Subsystems that are either dynamic or not dynamic

Services

174 z/OS V1R4.0 MVS Using the Subsystem Interface

v Subsystems that are either active or not active

v Subsystems that respond to a given list of function codes.

In addition, the issuer of the command can use the LIST or ALL keywords to specify
whether to display subsystem function codes. Subsystem information is displayed in
broadcast order.

Maintaining Information About the Callers of Your Subsystem
A common requirement for a subsystem is to maintain information specific to each
of its callers. To accomplish this, a subsystem needs both:
v A method of uniquely identifying each caller.
v A work area to store information about each caller (or a place to store the

address of a work area).

The subsystem affinity service solves both of these requirements. It allows a
subsystem to store and retrieve data at the task control block (TCB) level, thus
removing its dependence on information passed by callers.

Consider the following example: A subsystem provides service to many callers, and
must also maintain use counts by caller. Each caller can be identified by the TCB
that is associated with it.

The subsystem uses the subsystem affinity service to maintain a separate use
count for each of its callers. For each caller, the subsystem affinity service provides
the subsystem with a unique fullword entry, called a subsystem affinity entry .

Figure 18 shows how the subsystem uses a subsystem affinity entry for a particular
caller, to hold a pointer to a work area. The subsystem records use counts in the
work area. Because the subsystem affinity service allows each caller to be uniquely
identified by the TCB that it runs under, the subsystem can track the use count for
each of its callers.

Accessing the Subsystem Affinity Entry: To access the subsystem affinity entry
for each of its callers, a subsystem needs to:

TC B

W ork Area

Subsyst em Affinity Ent ries

W ork Area

Figure 18. Subsystem Affinity Service

Services

Chapter 6. Services for Building and Using Your Subsystem 175

v Invoke the verify subsystem function (SSI function code 15) through the
IEFSSREQ macro to acquire its subsystem affinity index . See “Verify
Subsystem Function Call — SSI Function Code 15” on page 40 for information
on SSI function code 15.

v Issue the SSAFF SET request to store data in the entry.

On subsequent invocations, the subsystem can issue the SSAFF OBTAIN request
to retrieve the address of a work area from the entry.

SSAFF: Set/Obtain Subsystem Affinity
Use the SSAFF macro to SET or OBTAIN a subsystem affinity entry.

An SSAFF SET request places one fullword of subsystem passed data in the
subsystem affinity entry, which is identified by the TCB parameter and the
subsystem affinity index. This allows the subsystem to put its entry in the
subsystem affinity entry of the current, active TCB.

An SSAFF OBTAIN request extracts and returns to the subsystem the fullword of
data from the subsystem affinity entry identified by the current TCB and the
subsystem’s index value. The OBTAIN request works only for the subsystem affinity
entry pointed to by the current TCB.

Note: A subsystem that uses the TCB subsystem affinity service cannot rely on
information stored in a subsystem affinity entry on a checkpoint/restart: the
subsystem affinity index value could change from one system initialization to
another. For additional information about the restrictions and use of the
checkpoint/restart facility, see z/OS DFSMS Checkpoint/Restart.

Before you issue the SSAFF macro, register 13 must point to an 18-word save
area.

The syntax of the SSAFF macro is:

[symbol] SSAFF {SET [,TCB=tcb-address]}
{OBTAIN }
,DATA=data-address
,ENTRY=index-value

One blank is required before and after “SSAFF”.

SET requests have the following requirements:

v The caller must be enabled, unlocked, and in supervisor state, key 0.

v The caller must not be in cross-memory mode.

v The TCB must be in the caller’s home address space and must be either the
current TCB or a subtask of the current TCB. If any of these conditions are not
satisfied, the calling routine abends.

OBTAIN requests have the following requirements:

v The caller must be in task mode. If this condition is not met, the calling routine
abends.

v The caller must have current addressability to the home address space.

The SSAFF macro parameters have the following meanings:

Services

176 z/OS V1R4.0 MVS Using the Subsystem Interface

symbol
any valid assembler language symbol.

SET
indicates that MVS is to place the value specified by the DATA parameter into
the subsystem’s associated subsystem affinity entry. The SET request destroys
the contents of registers 14, 15, 0, 1, and 2.

OBTAIN
indicates that MVS is to place the contents of the specified subsystem affinity
entry of the issuing task in the register or data area specified by the DATA
parameter. The OBTAIN request destroys the contents of registers 14, 15, 0,
and 1.

,TCB=tcb-address — RX-Type Address, or Register (2)-(12)
this parameter, valid only for SET requests, specifies the register or storage
location that contains the address of the TCB whose subsystem affinity entry
MVS is to use when processing the SET request.

Note: If you omit the TCB parameter, MVS uses the current task’s TCB. If you
allow this default, the calling program must include the IHAPSA mapping
macro to identify the current TCB.

,DATA=data-address — RX-Type Address, or Register (1) or (3)-(12)
For SET, this parameter specifies the register or fullword storage location that
contains the subsystem’s data. MVS stores the data in the subsystem affinity
entry for a SET request.

For OBTAIN, this parameter specifies the register or fullword storage location
that is to contain the value extracted from the subsystem affinity entry.

MVS returns a value of zero if any one of the following is true during an
OBTAIN request:

v The subsystem affinity entry associated with the specified index-value
contains a zero.

v A null subsystem affinity entry exists for the caller. (A SET request was not
performed prior to the OBTAIN request.)

v The specified index value exceeds the size of the caller’s subsystem affinity
entry.

,ENTRY=index-value — RX-Type Address, or Register (0) or (3)-(12)
this parameter specifies the register or fullword storage location that contains
the subsystems affinity index value. If you specify an index value greater than
the number of subsystems currently defined to MVS, the request fails.

For SSAFF SET requests, the subsystem affinity service uses:

v The TCB address to locate the required subsystem affinity table. When the
subsystem does not supply the TCB address, MVS uses the
currently-executing TCB (PSATOLD).

v The subsystem affinity index value to locate the specific subsystem affinity
entry that is to be set.

For SSAFF OBTAIN requests, the subsystem affinity service uses:

v The currently-executing TCB to locate the required subsystem affinity table.

v The subsystem affinity index value to locate the specific subsystem affinity
entry to be returned.

Services

Chapter 6. Services for Building and Using Your Subsystem 177

Services

178 z/OS V1R4.0 MVS Using the Subsystem Interface

Chapter 7. SSI Function Codes Your Subsystem Can Support

This chapter contains detailed information on function codes your subsystem can
support. The following is a list of SSI function codes, along with their purpose and
the type of subsystem request.

Function Code Requested Function Type of Request
4 End-of-task Broadcast
8 End-of-address space (End-of-memory) Broadcast
9 WTO/WTOR Broadcast
10 Command processing Broadcast
14 Delete operator message Broadcast
50 Early notification of end-of-task Broadcast
54 Request subsystem version information Directed
58 SMF SUBPARM option change Directed
78 Tape device selection Broadcast

Your subsystem can define and use its own function codes, using the range 236 to
255.

SSI Function Code Descriptions
Your subsystem can support several SSI function codes when coding for an
MVS/SP-JES2/JES3 environment. This section contains detailed descriptions of the
SSI function codes listed at the beginning of this chapter.

See Appendix A, “Examples — Subsystem Interface Routines” for coding examples
of function routines.

© Copyright IBM Corp. 1988, 2002 179

End-of-Task Call — SSI Function Code 4
The End-of-Task call (SSI function code 4) provides the ability to do task-related
resource clean up. Whenever a task ends, all active subsystems that are enabled to
receive SSI function code 4 are given control from the SSI after resource managers
are given control, including resource managers which were dynamically defined.
Each subsystem function routine will get control for every task that ends.

Note: This broadcast request is issued after all dynamic resource managers have
been given control, but not all system resource managers. For instance, the
following resource managers receive control after this End-of-Task call:
v PC Auth
v RSM

Type of Request
Broadcast SSI call.

Use Information
Your subsystem can use the SSI function code 4 to clean up any resources for a
task that is associated with a particular subsystem, and free any resources not
normally handled by a resource manager.

Because your function routine gets control for every End-of-Task call, using your
own subsystem may not be the most efficient way to do your own clean up for
ending tasks. IBM recommends that you define your own resource manager
through the use of the RESMGR macro. RESMGR can be used to monitor specific
ending tasks, rather than having to check each ending task or address space to see
if it used the subsystem. For a general description of resource managers and how
they can be defined at both IPL time and dynamically, see z/OS MVS Programming:
Authorized Assembler Services Guide.

Issued to
v All active subsystems that indicate they support the End-of-Task function when

the system (MVS) issues the End-of-Task call.

Related SSI Codes
SSI function code 4 is similar to SSI function code 50 (Early End-of-Task call). The
only difference is that, for SSI function code 4, your routine is given control after
most resource managers are given control. For SSI function code 50, your routine
is given control before most resource managers are given control. If you want to
obtain control before most resource managers have been invoked, see SSI function
code 50 (Early End-of Task).

Related Concepts
None.

Environment
Review “Function Routines/Function Codes” on page 153, which describes both the
general environment on entry to your function routine and other programming
considerations that your function routine should take into account.

If you decide to set up your subsystem to handle End-of-Task calls, make sure that
your function routine is in place before you enable the subsystem to receive SSI
function code 4. IBM recommends that you use the IEFSSVT macro to notify MVS
that your subsystem should be given control whenever End-of-Task calls are made.
IEFSSVT macro services are available only to dynamic subsystems. Subsystems

SSI Function Code 4

180 z/OS V1R4.0 MVS Using the Subsystem Interface

that are not dynamic can still use the IEFJSVEC service; see “Building the SSVT”
on page 259 and “Enabling Your Subsystem for New Functions” on page 263 for
more information.

The subsystem function routine runs in the address space of the ending task.
Because each subsystem function routine is called for every ending task, the
subsystem function routine should not be a long running program. That is, the
function routine should quickly determine if the subsystem was ever associated with
the ending task and, if not, return to the system. Also, do not code a function
routine that enters an explicit WAIT or uses a system service that enters a WAIT.
Entering a WAIT can cause degraded system performance.

If the system service is a WTO, be sure to specify the MCSFLAG=BUSYEXIT
parameter. In case of a WTO buffer shortage, WTOs with MCSFLAG=BUSYEXIT
will return a non-zero return code to indicate that the WTOs could not tolerate a
wait for WTO buffers. The WTOs will not be issued in this case, nor will they cause
an implied wait.

Data areas commonly referenced are mapped by the following mapping macros.
IBM recommends you include them in your function routine:
v IEFSSOBH
v IEFJSSIB
v IEFSSET

The function routine receives control in the following environment:

Minimum authorization Supervisor state with PSW key 0
Dispatchable unit mode Task
AMODE 24-bit or 31-bit
Cross memory mode PASN=HASN=SASN
ASC mode Primary
Interrupt status Enabled for I/O and external interrupts
Locks No locks held
Control parameters The SSIB, SSOB, and SSET control blocks reside in storage

below 16 megabytes.
Recovery The function routine should provide an ESTAE-type recovery

environment. See z/OS MVS Programming: Authorized
Assembler Services Guide for more information on how to
set up an ESTAE-type recovery environment.

Figure 19 on page 182 shows the environment on entry to the function routine for
SSI function code 4.

SSI Function Code 4

Chapter 7. SSI Function Codes Your Subsystem Can Support 181

|
|
|
|
|

Input Register Information
On entry to the function routine the general purpose registers contain:

Register Contents

0 Address of the subsystem’s SSCVT

1 Address of the SSOB control block

13 Address of a standard 18-word save area

14 Return address

15 Entry point address

Input Parameters
Input parameters for the function routine are:
v SSOB
v SSIB
v SSET

SSOB Contents: MVS sets the following fields in the SSOB control block on input:

Field Name Description

SSOBID Identifier ’SSOB’

SSOBLEN Length of the SSOB (SSOBHSIZ) control block

SSOBFUNC SSI function code 4 (SSOBEOT)

SSOBSSIB Address of the SSIB control block

SSOBRETN Return code from previous subsystem function routine or zero.

Regist er 1

SSO B

Funct ion Dependent A r ea
(SSO BINDV)

’SSO B’ (SSO BI D)

Lengt h
(SSO BLEN)

Funct ion ID
(SSO BFUNC)

SSIB (SSO BSSIB)

SSIB

Subsyst em Nam e (SSIBSSNM)

’SSI B’ (SSI BID)

Lengt h (SSIBLEN)

SSET

Rsvd

Lengt h
(SSETLEN)

Reserved

ASID
(SSETASID)

Norm al/Abnor m al
Ending Task Fl ag
(SSETYPE)

Ending Task’s TC B (SSETC BA)

Ending Task’s ASC B (SSETASC B)

Figure 19. Environment on Entry to the Function Routine for SSI Function Code 4

SSI Function Code 4

182 z/OS V1R4.0 MVS Using the Subsystem Interface

Because broadcast requests are routed to all active subsystems,
the SSOBRETN field contains the return code value set by some
previously invoked subsystem or zero. See “Output Register
Information” for a list of possible SSOBRETN return codes.

SSOBINDV Address of the function dependent area (SSET control block)

SSIB Contents: MVS sets the following fields in the SSIB control block on input:

Field Name Description

SSIBID Identifier ’SSIB’

SSIBLEN Length of the SSIB (SSIBSIZE) control block

SSIBSSNM Subsystem name — name of the subsystem enabled to receive this
function code.

SSET Contents: MVS sets the following fields in the SSET control block on input:

Field Name Description

SSETLEN Length of the SSET (SSETSIZE) control block

SSETASID ASID of the address space in which the task was active

SSETFLAG Flag indicators

v SSETYPE ON — indicates an abnormal ending task

v SSETYPE OFF — indicates a normal ending task

SSETCBA Address of ending task’s TCB

SSETASCB Address of ending task’s ASCB

Output Register Information
Upon exit from the function routine, the general purpose registers must contain:

Register Contents

0 — 12 Restored to contents on entry

14 Return address

15 Return code

Return Code Information
For MVS to process broadcast functions properly, you must use the following return
code conventions for function routines that handle broadcast calls. When a routine
returns control to the SSI:
v Set register 15 to 0.
v Set the SSOBRETN field in the SSOB control block to one of the following:

Return Code

(Decimal) Meaning

0 The function routine recognized the request but
did not process it.

4 The function routine recognized the request and
processed it.

SSI Function Code 4

Chapter 7. SSI Function Codes Your Subsystem Can Support 183

End-of-Address Space (End-of-Memory) Call — SSI Function Code 8
The End-of-Address Space Function (End of Memory) call (SSI function code 8)
provides the ability to free up any system-level resources, such as CSA, obtained
by a subsystem on behalf of an address space. Whenever an address space ends,
all active subsystems that are enabled to receive SSI function code 8 are given
control from the SSI. The function routine gets control for every address space that
ends.

Type of Request
Broadcast SSI call.

Use Information
Your subsystem can use SSI function code 8 to clean up any system-level
resources which your subsystem obtained for one or more address spaces.
Because private storage for the address space has already been deleted, your
function routine must not reference any storage in the ending address space.

Because your function routine gets control for every address space that ends, using
your own subsystem may not be the most efficient way to do your own clean up for
ending address spaces. IBM recommends that you define your own resource
manager through the use of the RESMGR macro. You can use RESMGR to receive
control for specific ending address spaces, rather than having to check each ending
task or address space to see if it used the subsystem. For a general description of
resource managers and how they can be defined at both IPL time and dynamically,
see z/OS MVS Programming: Authorized Assembler Services Guide.

Issued to
v All active subsystems that indicate they support the End-of-Address space

function when the system (MVS) issues the End-of-Address space call.

Related SSI Codes
None.

Related Concepts
None.

Environment
Review “Function Routines/Function Codes” on page 153, which describes both the
general environment on entry to your function routine and other programming
considerations that your function routine can take into account.

If you decide to set up your subsystem to handle End-of-Address space calls, make
sure that your function routine is in place before you enable the subsystem to
receive SSI function code 8. IBM recommends that you use the IEFSSVT macro to
notify MVS that your subsystem should be given control whenever End-of-Address
space calls are made. IEFSSVT macro services are available only to dynamic
subsystems. Subsystems that are not dynamic can still use the IEFJSVEC service;
see “Building the SSVT” on page 259 and “Enabling Your Subsystem for New
Functions” on page 263 for more information.

The subsystem function routine runs in the master scheduler address space.
Because each subsystem function routine is called for every ending address space,
the subsystem function routine should not be a long running program. That is, the
function routine should quickly determine if the subsystem was ever associated with
the ending address space and, if not, return to the system. Also, do not code a
function routine that enters an explicit WAIT or uses a system service that enters a
WAIT. Entering a WAIT can cause degraded system performance.

SSI Function Code 8

184 z/OS V1R4.0 MVS Using the Subsystem Interface

If the system service is a WTO, be sure to specify the MCSFLAG=BUSYEXIT
parameter. In case of a WTO buffer shortage, WTOs with MCSFLAG=BUSYEXIT
will return a non-zero return code to indicate that the WTOs could not tolerate a
wait for WTO buffers. The WTOs will not be issued in this case, nor will they cause
an implied wait.

Data areas commonly referenced are mapped by the following mapping macros.
IBM recommends you include them in your function routine:
v IEFSSOBH
v IEFJSSIB
v IEFSSEN

The subsystem function routine receives control in the following environment:

Minimum authorization Supervisor state with PSW key 0
Dispatchable unit mode Task
AMODE 24-bit or 31-bit
Cross memory mode PASN=HASN=SASN
ASC mode Primary
Interrupt status Enabled for I/O and external interrupts
Locks No locks held
Control parameters The SSOB, SSIB, and SSEN control blocks reside in storage

below 16 megabytes.
Recovery The function routine should provide an ESTAE-type recovery

environment. See z/OS MVS Programming: Authorized
Assembler Services Guide for more information on an
ESTAE-type recovery environment.

Figure 20 on page 186 shows the environment on entry to the function routine for
SSI function code 8.

SSI Function Code 8

Chapter 7. SSI Function Codes Your Subsystem Can Support 185

|
|
|
|
|

Input Register Information
On entry to the function routine the general purpose registers contain:

Register Contents

0 Address of the subsystem’s SSCVT

1 Address of the SSOB control block

13 Address of a standard 18-word save area

14 Return address

15 Entry point address

Input Parameters
Input parameters for the function routine are:
v SSOB
v SSIB
v SSEN

SSOB Contents: MVS sets the following fields in the SSOB control block on input:

Field Name Description

SSOBID Identifier ’SSOB’

Regist er 1

SSO B

Funct ion Dependent A r ea
(SSO BINDV)

’SSO B’ (SSO BI D)

Lengt h
(SSO BLEN)

Funct ion ID
(SSO BFUNC)

SSIB (SSO BSSIB)

SSIB

Subsyst em Nam e (SSIBSSNM)

’SSI B’ (SSI BID)

Lengt h (SSIBLEN)

SSEN

Rsvd

Lengt h
(SSENLEN)

Reserved

ASID
(SSENASID)

Norm al/Abnor m al
Ending Task Fl ag
(SSENTYPE)

Jobnam e List (SSENJBNM)

Ending Task’s ASC B (SSENASC B)

Last
ent ry

0000

Jobnam e list

Next Ent ry

Jobnam e associ ated
w ith endi ng
address space

0

4

C

Figure 20. Environment on Entry to the Function Routine for SSI Function Code 8

SSI Function Code 8

186 z/OS V1R4.0 MVS Using the Subsystem Interface

SSOBLEN Length of SSOB (SSOBHSIZ) control block

SSOBFUNC SSI function code 8 (SSOBEOM)

SSOBSSIB Address of SSIB control block

SSOBINDV Address of function dependent area (SSET control block)

SSIB Contents: MVS sets the following fields in the SSIB control block on input:

Field Name Description

SSIBID Identifier ’SSIB’

SSIBLEN Length of SSIB (SSIBSIZE) control block

SSIBSSNM Subsystem name — name of subsystem that is enabled to receive
this function code.

SSEN Contents: MVS sets the following fields in the SSEN control block on input:

Field Name Description

SSENLEN Length of SSEN (SSENSIZE) control block

SSENASID ASID of ending address space

SSENFLAG Flag indicators
v SSENTYPE ON — indicates an abnormal ending address space
v SSENTYPE OFF — indicates a normal ending address space

SSENJBNM Job name list pointer. For both normal and abnormal endings,
contains the list of job names that represents work associated with
the address space that is ending. Each entry in the list consists of
12 bytes (first 4 bytes contains pointer to next job name block or
zero if last; remaining 8 bytes contains the job name).

SSENASCB Address of ending address space’s ASCB

Output Register Information
Upon exit from the function routine, the general purpose registers must contain:

Register Contents

0 — 12 Restored to contents on entry

14 Return address

15 Return code

Return Code Information
For MVS to process broadcast functions properly, you must use the following return
code conventions for function routines that handle broadcast calls. When a routine
returns control to the SSI:
v Set register 15 to 0.
v Set the SSOBRETN field in the SSOB control block to one of the following:

Return
Code

(Decimal) Meaning

0 The function routine recognized the request but did not process
it.

4 The function routine recognized the request and processed it.

SSI Function Code 8

Chapter 7. SSI Function Codes Your Subsystem Can Support 187

WTO/WTOR Call — SSI Function Code 9
All applications running on MVS, MVS subsystems, and MVS itself, generate
messages. Each time a message is generated (with a write-to-operator (WTO) or a
write-to-operator-with-reply (WTOR) macro), the WTO/WTOR call (SSI function
code 9) is issued.

Note that WTOs and WTORs are issued in one of the following forms:
v Single-line message (WTO)
v Multi-line message (WTO) — first line of message
v Multi-line message (WTO) — subsequent lines of message
v Single-line message with reply (WTOR).

Type of Request
Broadcast SSI call.

Use Information
To have your function routine receive control for SSI function code 9, you must use
the IEAVG700 interface. You only need to issue IEAVG700 once for each IPL. Use
the following coding fragment to call module IEAVG700:
...
* Register declarations
R1 EQU 1 Declaration for register 1
R13 EQU 13 Declaration for register 13
R15 EQU 15 Declaration for register 15

...
DOBRDCST EQU * Request broadcast of WTO/WTORs

LA R1,SCSRPLST Get addressability to SCSR
ST R1,SCSRPTR Save pointer for standard linkage
XC SCSRPLST(SCSPLEN),SCSRPLST Zero out parameter list
MVC SCSACRO,SCSRACRN Set acronym value
MVI SCSVER,SCSVERSN Set version level
OI SCSFUNC1,SCSBRDON Indicate to broadcast WTO/WTORs
LA R1,SCSRPTR Set up standard entry linkage
LA R13,SAVEAREA Set up standard save area
LINK EP=IEAVG700 Call subsystem console routine
LTR R15,R15 See if request was successful
BNZ BRDFAIL Branch to process unsuccessful call

* Processing continues here for successful call...
* Module static storage area
SCSRACRN DC CL4’SCSR’

...
* Module dynamic storage area
SCSRPTR DS A Pointer to SCSR
SAVEAREA DS 18F Standard save area

...
* Include mapping for Subsystem Console Service Routine

IEZVG100 Include SCSR mapping macro

The SCSR (subsystem console service routine) parameter list is mapped by
mapping macro IEZVG100. Module IEAGV700 must be invoked in key 0, supervisor
state, running enabled in task mode with no locks held.

Upon ending, your subsystem should request that broadcasting be discontinued.
Use the same type coding fragment as above, except that the SCSBRDOF bit
(Broadcast off) is set, instead of the SCSBRDON bit (Broadcast on).

SSI Function Code 9

188 z/OS V1R4.0 MVS Using the Subsystem Interface

Your installation might also use the WTO/WTOR call (SSI function code 9) to take
any of the following actions against a message:
v Alteration — including text and routing information
v Deletion
v Generation of a reply (in the case of WTOR)
v Suppression.

Your installation can use the following methods to affect WTO/WTOR message
processing:
v Message processing facility (MPF) — see z/OS MVS Planning: Operations.
v Installation-written exit routines — see z/OS MVS Installation Exits.
v Automation — see z/OS MVS Planning: Operations.

In choosing which method to use to affect WTO/WTOR message processing, take
the following into consideration:

v The WTO general exit (IEAVMXIT) or message processing facility (MPF) exits
are the recommended ways to take actions against MVS messages prior to their
distribution to consoles and the system log, because they get control before the
SSI gets control, and they can be changed easily through the SYS1.PARMLIB
member. See z/OS MVS Installation Exits for information about IEAVMXIT and
MPF exits.

v The primary subsystem (JES) is usually the first subsystem to get control from
the SSI.

v Automation subsystems (such as NetView) are common users of SSI function
code 9. Automation subsystems also get control from the SSI so that, depending
on what you want your program to do, placing your subsystem before or after an
automation product may be of concern. For example, subsystems may alter
messages. If you are using an automation product that gets its messages from
the SSI, it may not receive the final version of a message if there are other
subsystems that subsequently change the message. If so, make sure you code
the subsystems in SYS1.PARMLIB member IEFSSNxx in the order in which you
want the subsystems to get control.

IBM recommends that you affect message processing with MPF or through one of
the automation subsystems.

MCSOPER/MCSOPMSG Macro Services: While SSI function code 9 is useful for
an application that needs to trap messages from the MVS message stream, it is no
longer the recommended interface for that purpose. The MCSOPER/MCSOPMSG
macro services (also known as Extended Operator) are the recommended
programming interface for receiving MVS messages. See z/OS MVS Programming:
Authorized Assembler Services Reference LLA-SDU for further information about
these services.

Issued to
v All active subsystems that indicate they support the WTO/WTOR function when

the system (MVS) issues the WTO/WTOR call.

Related SSI Codes
None.

Related Concepts
You need to know how to use WTO and WTOR macros and the IEAVG700
interface. You also need to understand the role that routing information (routing
codes) plays in determining the destinations of a message. See z/OS MVS

SSI Function Code 9

Chapter 7. SSI Function Codes Your Subsystem Can Support 189

Programming: Authorized Assembler Services Reference SET-WTO and z/OS MVS
Routing and Descriptor Codes for more information.

Environment
Review “Function Routines/Function Codes” on page 153, which describes both the
general environment on entry to your function routine and other programming
considerations that your function routine should take into account.

If you decide to set up your subsystem to handle WTO/WTOR calls, make sure that
your function routine is in place before you enable the subsystem to handle SSI
function code 9. IBM recommends that you use the IEFSSVT macro to notify MVS
that your subsystem should be given control whenever WTO/WTOR calls are made.
IEFSSVT macro services are available only to dynamic subsystems. Subsystems
that are not dynamic can still use the IEFJSVEC service; see “Building the SSVT”
on page 259 and “Enabling Your Subsystem for New Functions” on page 263 for
more information.

WTOs occur frequently on MVS. Function routines should therefore be as efficient
as possible. Function routines should never enter a WAIT and should never use
system services that have implied WAITs (such as I/O). Entering a WAIT can cause
degraded system performance.

If the system service is a WTO, be sure to specify the MCSFLAG=BUSYEXIT
parameter. In case of a WTO buffer shortage, WTOs with MCSFLAG=BUSYEXIT
will return a non-zero return code to indicate that the WTOs could not tolerate a
wait for WTO buffers. The WTOs will not be issued in this case, nor will they cause
an implied wait.

Data areas commonly referenced are mapped by the following mapping macros.
IBM recommends you include them in your function routine:
v IEFSSOBH
v IEFJSSIB
v IEFSSWT
v IHAWQE
v IHAORE

The write-to-operator WTO queue element (WQE), mapped by IHAWQE, represents
a message.

The operator reply element (ORE), mapped by IHAORE, represents a WTOR.

The function routine receives control in the following environment:

Minimum authorization Supervisor state with PSW key 0
Dispatchable unit mode Task
AMODE 24-bit or 31-bit
Cross memory mode PASN=HASN=SASN
ASC mode Primary
Interrupt status Enabled for I/O and external interrupts
Locks No locks held
Control parameters The SSOB, SSIB, SSWT, and WQE control blocks reside in

storage below 16 megabytes. The ORE control block resides
above 16 megabytes.

SSI Function Code 9

190 z/OS V1R4.0 MVS Using the Subsystem Interface

|
|
|
|
|

Recovery The function routine should provide an ESTAE-type recovery
environment. See z/OS MVS Programming: Authorized
Assembler Services Reference ENF-IXG for more
information on these macros. Failure to establish a recovery
environment causes the current message to be deleted from
the system, if the function routine ends abnormally while
processing the message.

The function routine’s recovery should specify a retry point
(address) and return 4 on the SETRP macro before returning
to system. The retry point should be used to complete a
normal return to the function routine’s caller. When the
function routine returns to its caller under these
circumstances, it should indicate to the system to take no
action against the message by setting both register 15 and
the SSOBRETN to zero. See “Input Register Information” for
more information about specifying to the system the action
that should be taken by your function routine.

Input Register Information
On entry to the function routine the general purpose registers contain:

Register Contents

0 Address of the SSCVT

1 Address of the SSOB control block

13 Address of a standard 18-word save area

14 Return address

15 Entry point address

Input Parameters
Input parameters for the function routine are:
v SSOB
v SSIB
v SSWT
v WQE
v ORE

SSOB Contents: MVS sets the following fields in the SSOB control block on input:

Field Name Description

SSOBID Identifier ’SSOB’

SSOBLEN Length of the SSOB (SSIBHSIZ) control block

SSOBFUNC SSI function code 9 (SSOBWTO)

SSOBSSIB Address of the SSIB control block

SSOBRETN Return code from previous function routine (when SSI function code
9 is operating in broadcast mode).

SSOBINDV Address of the function dependent area (SSWT control block)

SSIB Contents: MVS sets the following fields in the SSIB control block on input:

Field Name Description

SSIBID Identifier ’SSIB’

SSI Function Code 9

Chapter 7. SSI Function Codes Your Subsystem Can Support 191

SSIBLEN Length of the SSIB (SSIBSIZE) control block

SSIBSSNM Subsystem name — name of the subsystem which is enabled to
receive this function code.

SSWT Contents: MVS sets the following fields on input when either a single-line
WTO, multi-line WTO, or WTOR is being passed on the SSI call.

SSWT Contents for a Single-line WTO: MVS sets the following fields in the
SSWT control block on input for a single-line WTO:

Field Name Description

SSWTLEN Length of the SSWT (SSWTSIZE) control block

SSWTWQE Address of the WQE control block

SSWTNMOD Value of SUBSMOD keyword on the WTO macro

SSWTPRSP Indicates whether the SSWTPRTY field is valid

SSWTPRTY Value of the PRTY keyword on the WTO macro

SSWTSNSP Indicates whether the JOBNAME keyword was specified on the
WTO

SSWTSISP Indicates whether the JOBID keyword was specified on the WTO

Figure 21 shows the environment for a single-line WTO in the SSWT control block.

WQE Contents for a Single-line WTO: MVS sets the following fields in the WQE
control block on input for a single-line WTO:

Field Name Description

WQETXTLN Length of the message text

WQETS EBCDIC time stamp

WQEJOBNM Jobname (inserted by the primary subsystem)

WQETXT Message text

WQEXA Indicators
v WQEWTOR — indicates the message is a WTOR

IEFSSW T

SSW TW Q E

SSW TM IN = 0

SSW TO RE = 0

W Q E

Figure 21. Environment for a Single-line WTO in the SSWT Control Block

SSI Function Code 9

192 z/OS V1R4.0 MVS Using the Subsystem Interface

v WQEAUTH — indicates the message is issued by an authorized
program.

WQEASID ASID of the message issuer

WQETCB TCB address of the message issuer

WQESEQ# Message DOM id

WQEMCSF1 Indicators
v WQEMCSA — indicates the WQEROUT and WQEDESCD fields

are valid
v WQEMCSB — indicates the WQECNID and WQECNNME fields

are valid
v WQEMCSC — indicates the message is a command response
v WQEMCSD — indicates the WQEMSGTP field is valid
v WQEMCSE — indicates the message is reply to WTOR
v WQEMCSFF — indicates BRDCAST was specified on the WTO
v WQEMCSG — indicates HCONLY was specified on the WTO.

WQEMCSF2 Indicators
v WQEMCSM — indicates the message is a hardcopy image of

the operator command
v WQEMCSN — indicates that NOCPY was specified on the WTO.

WQEMSGTP Message type

WQEROUT Routing codes

WQEFLG1 Indicators
v WQERETAN — indicates that the message is retained by AMRF
v WQENMOD — indicates the subsystem cannot modify the

message
v WQEPPNA — indicates the message issued by the problem

program
v WQERISS — indicates the message is an SVC reissue of a

message that has already been processed by SVC WTO MPF
and the SSI have already processed the message. Note that
MPF processing occurs only during the original SVC WTO.
Examples of using this indicator include messages that originate
on one system (MVS sysplex), but are transported for display to
another system.

WQEDESCD Descriptor codes

WQEJSTCB Address of the job step TCB

WQEVRSN Version level — contains the WQEVRID

WQEMCSE1 Indicator
v WQEEBUSY — indicates that BUSYEXIT was specified on the

WTO.

WQESYSNM System name

WQEXMOD Copy of the MPF/IEAVMXIT user exit request flags

WQEMLVL Message level

WQEERC Extended routing codes

WQELENG Length of WQE — contains the WQESIZE

WQEKEY Value of the KEY keyword on the WTO

SSI Function Code 9

Chapter 7. SSI Function Codes Your Subsystem Can Support 193

WQETOKN Value of the TOKEN keyword on the WTO

WQECNID Console ID

WQEOJBID Originating job ID

WQEOJBNM Originating job name

WQEPRTY Value of the PRTY keyword on the WTO

WQEAUTOT Value of the AUTOTOKEN from MPF

WQEERFS Extended request flags from the MPF/IEAVMXIT user exit

WQECNNME Console name

WQECART Value specified on the CART keyword on the WTO

WQEBENIP Indicators
v WQEDOMD — indicates the message has been deleted by the

DOM macro.
v WQENBEW — indicates the message created by the

branch-entered WTO. Branch-entered WTOs are WTOs that
MVS has called for subsequent SVCs. Note that the ASCB/TCB
for SSI function code 9 is not the same as the ASCB/TCB of the
issuer of the branch-entered WTO.

v WQENHABD — indicates the message has been displayed on
the IPL or system console. This is a result of issuing a WTO with
SYNCH=YES specified.

WQECASEL Message color

WQEHASEL Message highlighting

WQEIASEL Message intensity

WQEMISC Indicator
v WQEAUTO — indicates AUTO(Y) specified in the MPF for this

message.

SSWT Contents for a Multi-line WTO: MVS sets the following fields in the SSWT
control block on input for a multi-line WTO:

See ″SSWT Contents for a Single-line WTO″ on page 192 for the fields that MVS
sets as they are the same except for the SSWTMIN field which contains the
following:

Field Name Description

SSWTMIN Address of the minor WQE

Figure 22 on page 195 shows the environment for a multi-line WTO in the SSWT
control block.

SSI Function Code 9

194 z/OS V1R4.0 MVS Using the Subsystem Interface

WQE (major WQE) Contents for the First Line of a Multi-line WTO: MVS sets
the following fields in the WQE control block for the first line of a multi-line WTO:

Field Name Description

WMJMMLW Multi-line indicator
v WMJMMLWB — indicates the WQE is multi-line

WMJMAREA Value specified on the WTO AREA keyword

WMJMTXTL Length of message text

WMJMTS EBCDIC time stamp

WMJMJBNM Jobname (inserted by the primary subsystem)

WMJMTXT Message text

WMJMDSP Indicator
v WMJMDSPH — indicates the message issued by the authorized

program

WMJMASID ASID of the message issuer

WMJMTCB TCB address of the message issuer

WMJMSEQ# Message DOM id

WMJMMCS1 Indicators
v WMJMCS1A — indicates that the WMJMRTC and WMJMDEC

fields are valid
v WMJMCS1B — indicates that the WMJMCNID and

WMJMCNME fields are valid
v WMJMCS1C — indicates the message is a command response
v WMJMCS1D — indicates the WMJMMT field is valid
v WMJMCS1E — indicates the message is a reply to the WTOR
v WMJMCS1F — indicates the BRDCAST keyword is specified on

the WTO
v WMJMCS1G — indicates the HCONLY is specified on the WTO

WMJMMCS2 Indicators
v WMJMCS2E — indicates the message is the hardcopy image of

the operator command
v WMJMCS2F — indicates the NOCPY is specified on the WTO

WMJMT Message type

IEFSSW T

SSW TW Q E

SSW TM IN = 0

SSW TO RE = 0

M AJO R
W Q E

Figure 22. Environment for a Multi-line WTO in the SSWT Control Block

SSI Function Code 9

Chapter 7. SSI Function Codes Your Subsystem Can Support 195

WMJMRTC Routing codes

WMJMFLG1 Indicator
v WMJMRETN — indicates the message will be retained by AMRF
v WMJMNMOD — indicates the subsystem cannot modify the

message
v WMJMPPNA — indicates the message is issued by the problem

program
v WMJMRISS — indicates the message is an SVC reissue of a

message that has already been processed by SVC WTO. MPF
and the SSI have already processed the message. Note that
MPF processing occurs only during the original SVC WTO.
Examples of using this indicator include messages that originate
on one system (MVS sysplex), but are transported for display to
another system (JES3 complex).

WMJMDEC Descriptor codes

WMJMJTCB Address of job step TCB

WMJMVRSN Version level — contains the WQEVRID

WMJMCE1 Indicator
v WMJEBUSY — indicates the BUSYEXIT is specified on the

WTO

WMJMSNM System name

WMJMXMOD Copy of the MPF/IEAVMXIT user exit request flags

WMJMMLVL Message level

WMJMERC Extended routing codes

WMJMLENG Length of WQE — contains the WMJMSIZE

WMJMKEY Value of the KEY keyword on the WTO

WMJMTOKN Value TOKEN keyword on the WTO

WMJMCNID Console ID

WMJMOJBI Originating job ID

WMJMOJBN Originating job name

WMJMPRTY Value of the PRTY keyword on the WTO

WMJAUTOT Value of the AUTOTOKEN from the MPF

WMJERFS Extended request flags from the MPF/IEAVMXIT user exit

WMJMCNME Console name

WMJMCART Value is specified on the CART keyword on the WTO

WMJBENIP Indicators
v WMJMDOMD — indicates the message has been deleted by the

DOM macro.
v WMJMNBEW — indicates the message created by the

branch-entered WTO. Branch-entered WTOs are WTOs that
MVS has called for subsequent SVCs. Note that the ASCB/TCB
for SSI function code 9 is not the same as the ASCB/TCB of the
issuer of the branch-entered WTO.

SSI Function Code 9

196 z/OS V1R4.0 MVS Using the Subsystem Interface

v WMJMNHABD — indicates the message has been displayed on
the IPL or system console. This is a result of issuing a WTO with
SYNCH=YES specified.

WMJCASEL Message color

WMJHASEL Message highlighting

WMJIASEL Message intensity

WMJMMISC Indicator
v WMJMAUTO — indicates the AUTO(Y) is specified in MPF for

this message

WQE (minor WQE) Contents for Subsequent Lines of a Multi-line WTO: MVS
sets the following fields in the WQE on input for subsequent lines of a multi-line
WTO:

Field Name Description

WMNMLT1 Line type indicators
v WMNMLT1B — label line
v WMNMLT1C — data line
v WMNMLT1D — end line

Note: The WMNMLT1C and WMNMLT1D fields can be on at same
time.

WMNMLTH1 Length of the minor WQE

WMNMTL1 Length of the minor text

WMNMTXT1 Minor line text

WMN1XMOD Copy of the request flags from the MPF/IEAVMXIT user exit

Figure 23 shows the environment for minor lines of a multi-line WTO in the SSWT
control block.

Multi-line Use Information

IEFSSW T

SSW TW Q E

SSW TM IN

SSW TO RE = 0

M AJO R
W Q E

M INO R
W Q E

Figure 23. Environment for Minor Lines of a Multi-line WTO in the SSWT Control Block

SSI Function Code 9

Chapter 7. SSI Function Codes Your Subsystem Can Support 197

For multi-line messages, the major WQE is only presented upon the first call of the
function routine. If the function routine wants to process the minor WQEs (minor
lines) associated with the message, it must set the WMJMRPML indicator in the
WMJMXMOD field of the Major WQE. MVS calls the function routine for each minor
WQE until all minor lines have been processed. Note that when processing minor
WQEs, the major WQE is intended for read access only. Changes to the major
WQE can only be made during the first SSI call for this message. The first SSI call
has no minor WQEs present.

SSWT Contents for a WTOR (always single-line): MVS sets the following fields in
the SSWT control block on input for a WTOR (always single-line):

See ″SSWT Contents for a Single-line WTO″ on page 192 for the fields that MVS
sets as they are the same except for the SSWTORE field which contains the
following:

Field Name Description

SSWTORE Address of the ORE control block

WQE Contents for a WTOR (always single-line): The fields in the WQE control
block for a WTOR (always single-line) that MVS sets on input contain the same
information as the WQE control block for a single-line WTO. See ″WQE Contents
for a Single-line WTO and WTOR″ on page 199 for this information.

ORE Contents for a WTOR (always single-line): MVS sets the following fields in
the ORE control block on input for a WTOR (always single-line):

Field Name Description

ORERPYA Address of the WTOR issuer’s reply buffer

OREECBA Address of the WTOR issuers ECB

ORECBID Acronym — ’ORE’

OREVRSN Version level — OREVRID

ORELNTH Maximum length of the requested reply (specified by the WTOR
issuer)

ORERPIDB Binary reply ID

Figure 24 shows the environment for a WTOR in the SSWT control block.

IEFSSW T

SSW TW Q E

SSW TO RE

SSW TM IN = 0

W Q E

O RE

Figure 24. Environment for a WTOR in the SSWT Control Block

SSI Function Code 9

198 z/OS V1R4.0 MVS Using the Subsystem Interface

Output Register Information
Upon exit from the function routine, the general purpose registers must contain:

Register Contents

0 — 12 Restored to contents on entry

14 Return address

15 Return code

Return Code Information
For MVS to process broadcast functions properly, you must use the following return
code conventions. When a routine returns control to the SSI:
v Set register 15 to 0.
v Set the SSOBRETN field in the SSOB control block to one of the following:

Return Code

(Decimal) Meaning

SSWTRTOK (0) The function routine recognized the request but
did not process it.

SSWTNDSP (4) Do not display message; hardcopy message

SSWTOKNH (8) Display message; do not hardcopy message

SSWTNDNH (12) Do not display message; do not hardcopy
message

Output Parameters
Output parameters for the function routine are:
v WQE

WQE Contents for a Single-line WTO and WTOR: The contents of the following
fields in the WQE control block for a single-line WTO and WTOR on output are:

Field Name Description

WQETXTLN New length of the message text (if text was altered)

WQETXT New/changed message text

WQEMSGTP New/changed message type. The WQEMCSD field must be set
appropriately.

WQEROUT New/changed routing codes. The WQEMCSA field must be set
appropriately.

WQEDESCD New/changed descriptor codes. The WQEMCSA field must be set
appropriately. The WQEROUT field must be non-zero.

WQEERC New/changed extended routing codes

WQECASEL New/changed message color

WQEHASEL New/changed message highlighting

WQEIASEL New/changed message intensity

WQE Contents for a Multi-line WTO (major line): The contents of the following
fields in the WQE control block for a multi-line WTO (major line) on output are:

Field Name Description

SSI Function Code 9

Chapter 7. SSI Function Codes Your Subsystem Can Support 199

WMJMTXTL New length of the message text (if text was altered)

WMJMTXT New/changed message text

WMJMXMOD Copy of the MPF/IEAVMXIT user exit request flags

WMJMRPML Set this field if the function routine should process minor lines

WMJMMT New/changed message type. The WMJMCS1D field must be set.

WMJMRTC New/changed routing codes. The WMJMCS1A field must be set.

WMJMDEC New/changed descriptor codes. The WMJMCS1A field must be set.
The WMJMRTC field must be non-zero.

WMJMERC New/changed extended routing codes

WMJCASEL New/changed message color

WMJHASEL New/changed message highlighting

WMJIASEL New/changed message intensity

WQE Contents for a Multi-line WTO (minor line): The contents of the following
fields in the WQE control block for a multi-line WTO (minor line) on output are:

Field Name Description

WMNMTL1 New length of the minor text (if the WMNMTXT1 field is modified)

WMNMTXT1 New/changed minor line text

SSI Function Code 9

200 z/OS V1R4.0 MVS Using the Subsystem Interface

Command Processing Call — SSI Function Code 10
The Command Processing call (SSI function code 10) is issued every time a
system command is generated. SSI function code 10 allows the SSI to find system
commands intended for your installation-written subsystem.

Type of Request
Broadcast SSI call.

Use Information
Your installation can use the Command Processing call (SSI function code 10) to:
v Receive a command for processing
v Alter the text of a command (add additional parameters)
v Monitor command traffic
v Prevent commands from being used on the system.

Issued to
v All active subsystems that indicate they support the Command Processing

function when the system (MVS) issues the Command Processing call.

Related SSI Codes
None.

Related Concepts
You should know how to use command authorization and routing command
responses through a WTO. See z/OS MVS System Commands Summary and z/OS
MVS Planning: Operations for command authority concepts. See z/OS MVS
Programming: Authorized Assembler Services Reference ALE-DYN for information
on routing command responses to operator consoles using the CONSID keyword.

Environment
Review “Function Routines/Function Codes” on page 153, which describes both the
general environment on entry to your function routine and other programming
considerations that your function routine should take into account.

If you decide to set up your subsystem to handle command processing calls, make
sure that your function routine is in place before you enable the subsystem to
handle SSI function code 10. IBM recommends that you use the IEFSSVT macro to
notify MVS that your subsystem should be given control whenever Command
Processing calls are made. IEFSSVT macro services are available only to dynamic
subsystems. Subsystems that are not dynamic can still use the IEFJSVEC service;
see “Building the SSVT” on page 259 and “Enabling Your Subsystem for New
Functions” on page 263 for more information.

Do not code a function routine that enters an explicit WAIT or uses a system
service that enters a WAIT. Entering a wait can cause degraded system
performance.

If the system service is a WTO, be sure to specify the MCSFLAG=BUSYEXIT
parameter. In case of a WTO buffer shortage, WTOs with MCSFLAG=BUSYEXIT
will return a non-zero return code to indicate that the WTOs could not tolerate a
wait for WTO buffers. The WTOs will not be issued in this case, nor will they cause
an implied wait.

Data areas commonly referenced are mapped by the following mapping macros.
IBM recommends you include them in your function routine:
v IEFSSOBH
v IEFJSSIB

SSI Function Code 10

Chapter 7. SSI Function Codes Your Subsystem Can Support 201

|
|
|
|
|

v IEFSSCM
v IEZMGCR

The function routine receives control in the following environment:

Minimum authorization Supervisor state with PSW key 0
Dispatchable unit mode Task
AMODE 24-bit or 31-bit
Cross memory mode PASN=HASN=SASN
ASC mode Primary
Interrupt status Enabled for I/O and external interrupts
Locks No locks held
Control parameters The SSOB, SSIB, and SSCM control blocks reside in

storage below 16 megabytes.
Recovery The function routine should provide an ESTAE-type recovery

environment. See z/OS MVS Programming: Authorized
Assembler Services Reference ENF-IXG for more
information on these macros. Failure to establish a recovery
environment ends the processing of the current operator
command if an abend occurs.

The function routine’s recovery should retry. The retry point
should take one of the following actions:
v Ignore the command
v Indicate to the system the command could not be

processed
v Indicate to the system the command was processed. The

system issues error message IEE707E indicating the
command failed.

Note: Refer to “Output Register Information” on page 205 for
instructions on what your function routine should specify to
the system.

Figure 25 on page 203 shows the environment on entry to the function routine for
SSI function code 10.

SSI Function Code 10

202 z/OS V1R4.0 MVS Using the Subsystem Interface

Input Register Information
On entry to the function routine the general purpose registers contain:

Register Contents

0 Address of the subsystem’s SSCVT

1 Address of the SSOB control block

13 Address of a standard 18-word save area

14 Return address

15 Entry point address

Input Parameters
Input parameters for the function routine are:
v SSOB
v SSIB

Regist er 1

SSO B

Funct ion Dependent A r ea
(SSO BINDV)

’SSO B’ (SSO BI D)

Lengt h
(SSO BLEN)

Funct ion ID
(SSO BFUNC)

SSIB (SSO BSSIB)

SSIB

Subsyst em Nam e (SSIBSSNM)

’SSI B’ (SSI BID)

Lengt h (SSIBLEN)

SSC M

ReservedSSC M LEN SSC M
VRSM

SSC M
DISP

SSC M AUTH Reserved

SSC M A C RN

SSC M C TXT

SSM UTO K

SSM ULTH

SSM C N ID

SSC M C XPT

REPLY
com m and area

SSC M BUFF

SSC M BLEN

SSC M C A RT

M G C RPL param eter l ist
(m apped by I EZM G C R)

FlagsLengt h C om m and
Text

Figure 25. Environment on Entry to the Function Routine for SSI Function Code 10

SSI Function Code 10

Chapter 7. SSI Function Codes Your Subsystem Can Support 203

v SSCM
v Command Sensitive Area
v MGCRPL

SSOB Contents: MVS sets the following fields in the SSOB control block on input:

Field Name Description

SSOBID Identifier ’SSOB’

SSOBLEN Length of the SSOB (SSOBHSIZ) control block

SSOBFUNC SSI function code 10 (SSOBCMND)

SSOBSSIB Address of the SSIB control block

SSOBINDV Address of the function dependent area (SSCM control block)

SSIB Contents: MVS sets the following fields in the SSIB control block on input:

Field Name Description

SSIBID Identifier ’SSIB’

SSIBLEN Length of the SSIB (SSIBSIZE) control block

SSIBSSNM Subsystem name ’MSTR’

SSCM Contents: MVS sets the following fields in the SSCM control block on input:

Field Name Description

SSCMLEN Length of the SSCM (SSCMSIZE) control block

SSCMVRSN Version level of the SSCM (SSCMVRID) control block

SSCMBUFF Address of the command buffer in the MGCRPL control block

SSCMACRN Identifier ’SSCM’

SSCMAUTH Command authority of command issuer — see the SSCM control
block information for the definition of flags within this byte.

SSCMDISP Disposition flags — see the SSCM control block information for the
definition of flags within this byte.

SSCMBLEN Length of the command buffer pointed to by the SSCMBUFF field.

SSCMOLIB If the command text was changed by symbolic substitution
(indicated by an ON value in the SSCMSYMS field), this field
contains a DSECT that maps the original command text (the text
that existed before symbolic substitution occurred).

SSCMOLIP If the command text was changed by symbolic substitution
(indicated by an ON value in the SSCMSYMS field), this field
contains the address of the SSCMOLIB structure.

SSCMSYMS The command text was changed by symbolic substitution.

SSCMUTOK Address of the UTOKEN

The UTOKEN identifies the issuer of the command. The
RACROUTE macro accepts the UTOKEN to perform command
authorization checking using a security product (RACF).

SSCMULTH Length of the UTOKEN

SSI Function Code 10

204 z/OS V1R4.0 MVS Using the Subsystem Interface

SSCMCNID 4-byte console ID — identifies the console that the command was
issued from.

SSCMSCNM Console name of the console whose ID is in the SSCMCNID

SSCMCTXT Address of a 126-byte buffer containing the command text

SSCMCLEN Length of command text

SSCMCART Command and response token

To identify the source of the command, all command responses
issued by a function routine through a WTO or WTOR should
specify either SSCMCNID or SSSCNM and SSCMCART.

SSCMCXPT Address of command sensitive area or zero

Command Sensitive Area Contents: MVS sets the following fields in the
command sensitive area for a REPLY command on input. The address of this area
(when present) is available in the SSCMCXPT field. If not present, SSCMCXPT=0.

Field Name Description

SSCMCVRB Command identifier — REPLY

SSCMRTCB TCB address of the WTOR issuer

SSCMRASI ASID of the WTOR issuer

SSCMRTXT Offset to the reply text in the area pointed to by either the
SSCMCTXT field or SSCMBUFF+4.

SSCMRFLG Reply flag
v SSCMRSEC — indicates whether the REPLY is to a security

WTOR (route code of 9).

MGCRPL Contents: The address of the MGCRPL control block is available in the
SSCMBUFF. MVS sets the following fields in the MGCRPL control block on input:

Field Name Description

MGCRLGTH Length of the command text + 4

MGCRFLG2 Command processing flags — see the MGCRPL control block
information for a definition of these flags.

MGCRTEXT Command text

Output Register Information
Upon exit from the function routine, the general purpose registers must contain:

Register Contents

0 — 12 Restored to contents on entry

14 Return address

15 Return code

Return Code Information
For MVS to process broadcast functions properly, you must use the following return
code conventions for function routines that handle broadcast calls. When a routine
returns control to the SSI:
v Set register 15 to 0.
v Set the SSOBRETN field in the SSOB control block to one of the following:

SSI Function Code 10

Chapter 7. SSI Function Codes Your Subsystem Can Support 205

Return
Code

(Decimal) Meaning

SSCMSCMD (0)
The command does not belong to the function routine.

SSCMSUBC (4)
The command belongs to the function routine and was
processed.

SSCMIMSG (8)
The command belongs to the function routine, but could not be
processed. Message IEE707I is issued.

Output Parameters
Output parameters for the function routine are:
v MGCRPL

MGCRPL Contents: The address of the MGCRPL control block is available in
SSCMBUFF. Your function routine can modify the contents of the following fields in
the MGCRPL control block on output:

Field Name Description

MGCRLGTH Length of the command text plus 4. A new length can be specified.
The new length must be greater than or equal to 5, but cannot
exceed 130.

MGCRTEXT Command text — the command text can be altered and replaced. If
the length is changed, MGCRLGTH (above) must also be updated.

Note: A function routine that alters the text of the command for processing by
either another subsystem or MVS must specify SSOBRETN=0 upon return to
the caller.

Restrictions
Only one subsystem can claim ownership of a command and assume responsibility
for its processing by assigning a unique command prefix to the subsystem; any
command prefixed by that command prefix is owned by that subsystem.

Notes:

1. A command prefix is a character string of one or more alphanumeric and/or
national characters. Command prefixes often have a length of one character,
although a maximum of eight characters is permitted.

2. See the CPF macro in z/OS MVS Programming: Authorized Assembler Services
Reference ALE-DYN for information on registering command prefixes.

General Considerations
Command processors that receive their input from SSI function code 10 should
consider:

v Using the 4-byte console ID. This is found in the SSCMCNID field of the SSCM
control block. An application that uses the MCSOPER interface (see MCSOPER
in z/OS MVS Programming: Authorized Assembler Services Reference LLA-SDU
can only be assured of receiving the command response by using this field on a
WTO. If a 1-byte console ID must be used, use the value in the SSCMSCID field.
Please note, however, that the 1-byte console ID found in the SSCMSCID field
cannot guarantee the command response message will reach the MCSOPER
user who issued the command.

SSI Function Code 10

206 z/OS V1R4.0 MVS Using the Subsystem Interface

v Using the SSCMAUTH field. Use the flag settings of the SSCMAUTH field to test
the command authority of the caller. This field is mapped by the UCMAUTH field
in the UCME (IEECUCM).

v Using the SSCMCART field. All command response messages issued through a
WTO should use the values passed in the SSCMCNID field (above) and in the
SSCMCART field. The use of these values ensures proper delivery of the
message to the command issuer.

Considerations for Command Processing Calls in a Sysplex:

In a sysplex, command processing SSI calls are made to subsystems:

v On the originating console’s system only, when the command is not routed to any
other system in the sysplex.

v On the originating console’s system only, when the command is routed to
another system in the sysplex as the result of the location (L=) operand on the
command or the specification of a console by name.

v On the receiving system only, when it is a prefix command that is routed through
the MCS command prefix facility.

v On both the originating system and the receiving system, when the ROUTE
command is issued, as follows:
– On the originating system for the ROUTE command.
– On the receiving system for the command that is routed.

Considerations for Commands That Specify System Symbols:

When a command contains system symbols, MVS provides the command text to
the SSI after it substitutes text for the system symbols. For example, if the following
command is entered to display a console group on system SYS1:

DISPLAY CNGRP,G=(CN1GRP&SYSCLONE.)

The SSI receives the following text (assuming that the default for &SYSCLONE.,
the last two characters of the system name, is taken):

DISPLAY CNGRP,G=(CN1GRPS1)

If the function routine requires the original command text (the one that existed
before symbolic substitution), it can access the SSCMOLIB field in the SSCM (see
z/OS MVS Data Areas, Vol 1 (ABEP-DALT) for a description of the IEFSSCM
mapping macro, which maps the SSCM).

Do not use the function routine to add or change system symbols in command text.
The system cannot substitute text for system symbols that are added or changed
through the SSI.

SSI Function Code 10

Chapter 7. SSI Function Codes Your Subsystem Can Support 207

Delete Operator Message — SSI Function Code 14
The Delete Operator Message call (SSI function code 14) is issued for every DOM
that is created. SSI function code 14 allows the SSI to find DOMs intended for your
installation-written subsystem.

Type of Request
Broadcast SSI call.

Use Information
Your installation can use the DOM Processing call (SSI function code 14) to:
v Receive a DOM for processing
v Monitor DOM traffic
v Verify that a WTO or WTOR message has been deleted
v Alter the type of DOM. (IBM does not recommend this use.)

Issued to
v All active subsystems that indicate they support the DOM processing function

when the system (MVS) issues the DOM Processing call.

Related SSI Codes
None.

Related Concepts
You should know how to recognize and use DOMs. See z/OS MVS Programming:
Authorized Assembler Services Reference ALE-DYN and z/OS MVS Programming:
Authorized Assembler Services Guide.

Environment
Review “Function Routines/Function Codes” on page 153, which describes both the
general environment on entry to your function routine and other programming
considerations that your function routine should take into account.

If you decide to set up your subsystem to handle DOM processing calls, make sure
that your function routine is in place before you enable the subsystem to handle SSI
function code 14. IBM recommends that you use the IEFSSVT macro to notify MVS
that your subsystem should be given control whenever DOM Processing calls are
made. IEFSSVT macro services are available only to dynamic subsystems.
Subsystems that are not dynamic can use the IEFJSVEC service; see “Building the
SSVT” on page 259 and “Enabling Your Subsystem for New Functions” on page 263
for more information.

DOMs occur frequently with MVS. Function routines should therefore be as efficient
as possible. Do not code a function routine that enters an explicit WAIT or uses a
system service that enters a WAIT because entering a wait can cause degraded
system performance.

If the system service is a WTO, be sure to specify the MCSFLAG=BUSYEXIT
parameter. In case of a WTO buffer shortage, WTOs with MCSFLAG=BUSYEXIT
will return a non-zero return code to indicate that the WTOs could not tolerate a
wait for WTO buffers. The WTOs will not be issued in this case, nor will they cause
an implied wait.

Data areas commonly referenced are mapped by the following mapping macros.
IBM recommends you include them in your function routine:
v IEFSSOBH
v IEFJSSIB
v IEFJSSOB

SSI Function Code 14

208 z/OS V1R4.0 MVS Using the Subsystem Interface

|
|
|
|
|

v IEFSSDM
v IHADOMC

The delete operator message mapped by IHADOMC represents a DOM.

The function routine receives control in the following environment:

Minimum authorization Supervisor state with PSW key 0
Dispatchable unit mode Task
AMODE 24-bit or 31-bit
Cross memory mode PASN=HASN=SASN
ASC mode Primary
Interrupt status Enabled for I/O and external interrupts
Locks No locks held
Control parameters The SSOB, SSIB, and SSCM control blocks reside in

storage below 16 megabytes.
Recovery The function routine should provide an ESTAE-type recovery

environment. See z/OS MVS Programming: Authorized
Assembler Services Reference ENF-IXG for more
information on these macros. Failure to establish a recovery
environment ends the processing of the current DOM if an
abend occurs.

The function routine’s recovery should specify a retry point
(address) and return 4 on the SETRP macro before returning
to the system. Use the retry point to complete a normal
return to the function routine’s caller. When the function
routine returns to its caller under these circumstances, it
should indicate to the system, by setting both register 15 and
the SSOBRETN to zero, to take no action against the
message. See the next topic, Input Register Information, for
how to specify to the system the action you want your
function routine to take.

Input Register Information
On entry to the function routine the general purpose registers contain:

Register Contents

0 Address of the subsystem’s SSCVT

1 Address of the SSOB control block

13 Address of a standard 18-word save area

14 Return address

15 Entry point address

Input Parameters
Input parameters for the function routine are SSOB, SSIB, SSDM, and DOMC.

SSOB Contents: MVS sets the following fields in the SSOB control block on input:

Field Name Description

SSOBID Identifier ’SSOB’

SSOBLEN Length of the SSOB (SSIBHSIZ) control block

SSOBFUNC SSI function code 14 (SSOBDOM)

SSOBSSIB Address of the SSIB control block

SSI Function Code 14

Chapter 7. SSI Function Codes Your Subsystem Can Support 209

SSOBRETN Return code from the previous function routine (when SSI function
code 14 is operating in broadcast mode)

SSOBINDV Address of the function-dependent area (SSDM control block)

SSDM Contents: MVS sets these fields in the SSDM control block on input:

Field Name Description

SSDMLEN Length of the SSDM (SSDMSIZE) control block

SSDMVRSN Version level of the SSDM (SSDMVRID) control block

SSDMACRN Identifier ’SSDM’

SSDMSEND Indicator that the DOM request should be communicated to other
systems

SSDMDMCB The address of that part of the DOMC that is passed to the
subsystem

SSDMDMC2 The address of the entire DOMC that is passed to the subsystem

DOMC Contents: The address of the DOMC control block is in SSDMDMC2. See
z/OS MVS Data Areas, Vol 2 (DCCB-ITZYRETC) for the DOMC information.

Output Register Information: Upon exit from the function routine, the general
purpose registers must contain:

Register Contents

0 — 12 Restored to contents on entry

14 Return address

15 Return code

Return Code Information: For MVS to process broadcast functions properly, you
must use the following return code convention for function routines that handle
broadcast calls: when a routine returns control to the SSI, set register 15 to 0.

The DOM Processing call does not have any return codes.

Output Parameters: The output parameter for the function routine is DOMC.

IBM recommends that the function routine does not alter the DOMC.

Restrictions: None.

General Considerations: IBM recommends that the function routine does not
alter the DOMC.

SSI Function Code 14

210 z/OS V1R4.0 MVS Using the Subsystem Interface

Early Notification of End-of-Task Call — SSI Function Code 50
The Early Notification of End-of-Task call (SSI function code 50) provides the ability
to do task-related resource clean up. Whenever a task ends, all active subsystems
that are enabled to receive SSI function code 50 are given control from the SSI
before resource managers are given control. Each subsystem function routine will
get control for every task that ends.

Note: This broadcast request is issued before many resource managers have been
given control, but not all resource managers. For instance, the following
resource managers receive control before this Early Notification of
End-of-Task call:
v Availability Manager (AVM)
v SVC Dump

Type of Request
Broadcast SSI call.

Use Information
Your subsystem can use SSI function code 50 to clean up any resources for a task
associated with a particular subsystem, and free any resources not normally
handled by a resource manager.

Because your function routine will get control for every Early Notification of
End-of-Task call, using your own subsystem might not be the most efficient way to
do your own clean up for ending tasks. The preferred way to define your own
resource manager is through the use of the RESMGR macro. The RESMGR
service can be used to receive control for specific ending tasks, rather than having
to check each ending task or address space to see if it used the subsystem. For a
general description of resource managers and how they can be defined at both IPL
time and dynamically, see z/OS MVS Programming: Authorized Assembler Services
Guide.

Issued to
v All active subsystems that indicate they support the Early Notification of

End-of-Task function when the system (MVS) issues the Early Notification of
End-of-Task call.

Related SSI Codes
SSI function code 50 is almost identical to SSI function code 4 (End-of-Task call).
The only difference is that, for SSI function code 50, your function routine is given
control before most resource managers are given control, whereas, for SSI function
code 4, your function routine is given control after most resource managers are
given control. If you are interested in obtaining control after most resource
managers have been invoked, see SSI function code 4 (End-of Task).

Related Concepts
None.

Environment
Review “Function Routines/Function Codes” on page 153, which describes both the
general environment on entry to your function routine and other programming
considerations that your function routine should take into account.

If you decide to set up your subsystem to handle Early Notification of End-of-Task
calls, make sure that your function routine is in place before you enable the
subsystem for SSI function code 50. IBM recommends that you use the IEFSSVT
macro to notify MVS that your subsystem should be given control whenever Early

SSI Function Code 50

Chapter 7. SSI Function Codes Your Subsystem Can Support 211

Notification of End-of-Task calls are made. IEFSSVT macro services are available
only to dynamic subsystems. Subsystems that are not dynamic can still use the
IEFJSVEC service; see “Building the SSVT” on page 259 and “Enabling Your
Subsystem for New Functions” on page 263 for more information.

The subsystem function routine runs in the address space of the ending task.
Because each subsystem function routine is called for every ending task, the
subsystem function routine should not be a long running program. That is, the
function routine should quickly determine if the subsystem was ever associated with
the ending task and, if not, return to the system. Also, do not code a function
routine that enters an explicit WAIT or uses a system service that enters a WAIT.
Entering a WAIT can cause degraded system performance.

If the system service is a WTO, be sure to specify the MCSFLAG=BUSYEXIT
parameter. In case of a WTO buffer shortage, WTOs with MCSFLAG=BUSYEXIT
will return a non-zero return code to indicate that the WTOs could not tolerate a
wait for WTO buffers. The WTOs will not be issued in this case, nor will they cause
an implied wait.

Data areas commonly referenced are mapped by the following mapping macros.
IBM recommends you include them in your function routine:
v IEFSSOBH
v IEFJSSIB
v IEFSSET

The function routine receives control in the following environment:

Minimum authorization Supervisor state with PSW key 0
Dispatchable unit mode Task
AMODE 24-bit or 31-bit
Cross memory mode PASN=HASN=SASN
ASC mode Primary
Interrupt status Enabled for I/O and external interrupts
Locks No locks held
Control parameters The SSIB, SSOB, and SSET control blocks reside in storage

below 16 megabytes.
Recovery The function routine should provide an ESTAE-type recovery

environment. See z/OS MVS Programming: Authorized
Assembler Services Guide for more information on an
ESTAE-type recovery environment.

Figure 26 on page 213 shows the environment on entry to the function routine for
SSI function code 50.

SSI Function Code 50

212 z/OS V1R4.0 MVS Using the Subsystem Interface

|
|
|
|
|

Input Register Information
On entry to the function routine the general purpose registers contain:

Register Contents

0 Address of the subsystem’s SSCVT

1 Address of the SSOB control block

13 Address of a standard 18-word save area

14 Return address

15 Entry point address

Input Parameters
Input parameters for the function routine are:
v SSOB
v SSIB
v SSET

SSOB Contents: The following fields in the SSOB control block are set on input:

Field Name Description

SSOBID Identifier ’SSOB’

SSOBLEN Length of the SSOB (SSOBHSIZ) control block

SSOBFUNC SSI function code 50 (SSOBFEOT)

SSOBSSIB Address of the SSIB control block

SSOBRETN Return code from previous subsystem function routine or zero.

Regist er 1

SSO B

Funct ion Dependent A r ea
(SSO BINDV)

’SSO B’ (SSO BI D)

Lengt h
(SSO BLEN)

Funct ion ID
(SSO BFUNC)

SSIB (SSO BSSIB)

SSIB

Subsyst em Nam e (SSIBSSNM)

’SSI B’ (SSI BID)

Lengt h (SSIBLEN)

SSET

Rsvd

Lengt h
(SSETLEN)

Reserved

ASID
(SSETASID)

Norm al/Abnor m al
Ending Task Fl ag
(SSETYPE)

Ending Task’s TC B (SSETC BA)

Ending Task’s ASC B (SSETASC B)

Figure 26. Environment on Entry to the Function Routine for SSI Function Code 50

SSI Function Code 50

Chapter 7. SSI Function Codes Your Subsystem Can Support 213

Since broadcast requests are routed to all active subsystems, upon
entry to the function routine SSOBRETN contains the return code
value set by the previously invoked subsystem function code(s) or
zero. See “Output Register Information” for a list of possible
SSOBRETN return codes.

SSOBINDV Address of the function dependent area (SSET control block)

SSIB Contents: The following fields in the SSIB control block are set on input:

Field Name Description

SSIBID Identifier ’SSIB’

SSIBLEN Length of the SSIB (SSIBSIZE) control block

SSIBSSNM Subsystem name — name of subsystem which is enabled to
receive this function code.

SSET Contents: The following fields in the SSET control block are set on input:

Field Name Description

SSETLEN Length of the SSET (SSETSIZE) control block

SSETASID ASID of address space in which task was active

SSETFLAG Flag indicators

v SSETYPE ON — indicates an abnormal ending task

v SSETYPE OFF — indicates a normal ending task

SSETCBA Address of ending task’s TCB

SSETASCB Address of ending task’s ASCB

Output Register Information
Upon exit from the function routine, the general purpose registers must contain:

Register Contents

0 — 12 Restored to contents on entry

14 Return address

15 Return code

Return Code Information
For MVS to process broadcast functions properly, you must use the following return
code conventions for function routines that handle broadcast calls. When a routine
returns control to the SSI:
v Set register 15 to 0.
v Set the SSOBRETN field in the SSOB control block to one of the following:

Return
Code

(Decimal) Meaning

0 The function routine recognized the request but did not process
it.

4 The function routine recognized the request and processed it.

SSI Function Code 50

214 z/OS V1R4.0 MVS Using the Subsystem Interface

Request Subsystem Version Information Call — SSI Function Code 54
The Request Subsystem Version Information Call (SSI function code 54) provides a
requesting program the ability to obtain version-specific information about a
user-supplied subsystem. The information in “Request Subsystem Version
Information Call — SSI Function Code 54” on page 55 describes what happens
when SSI function code 54 is issued to the IBM-supplied subsystems (master or
JES) by user-provided calling programs or routines.

The information that follows describes what a user-supplied subsystem needs to
provide so that it can process incoming SSI function code 54 requests from callers
that request information like the information provided by the two IBM-supplied
subsystems. The user-supplied subsystem must then provide both the function
routine to handle this request, as well as the information concerning the specific
returned information. The user-supplied subsystem must provide information to the
callers, because all version information returned to the caller is defined by, and has
meaning only to, the user-supplied subsystem.

Type of Request
Directed SSI call.

Use Information
A subsystem may want to allow users to obtain the following information about
itself:
v Product function modification identifier (FMID)
v Product version number
v Subsystem common name (such as ’XYZ1’)
v Any other information that the subsystem wishes to present to the caller.

Issued to
v A user-supplied subsystem

Related SSI Codes
None.

Related Concepts
You need to understand:

v What the caller of the SSI function code 54 must code and what the caller
expects to receive. See “Request Subsystem Version Information Call — SSI
Function Code 54” on page 55 for a description of this Request Subsystem
Version Information call from a calling program’s point of view.

v What the format of the IEFSSVI functional extension is as defined in “Request
Subsystem Version Information Call — SSI Function Code 54” on page 55.

Environment
Data areas commonly referenced are mapped by the following mapping macros.
IBM recommends you include them in you function routine:
v IEFSSOBH
v IEFJSSIB
v IEFSSVI

The function routine receives control in the following environment:

Minimum authorization Any state, any key, depending on the implementation of the
function routine. However, IBM suggests that you process
this function in problem state, any key.

Dispatchable unit mode Task

SSI Function Code 54

Chapter 7. SSI Function Codes Your Subsystem Can Support 215

AMODE 24-bit or 31-bit, depending on the implementation of the
function routine. If 24-bit AMODE, the callers of the routine
must obtain all their control parameters below 16 megabyte
storage so that the serving routine can address them. IBM
recommends this program runs in AMODE 31.

Cross memory mode PASN=HASN=SASN
Interrupt status Enabled for I/O and external interrupts
Locks No locks held
Control parameters Above or below 16 megabytes depending on the

implementation of the routine. However, if the routine runs in
AMODE 24, the caller must obtain the control parameters
and pass to the serving routine below the line so that it can
address them.

Recovery The function routine should provide an ESTAE-type recovery
environment. See z/OS MVS Programming: Authorized
Assembler Services Guide for more information on how to
set up an ESTAE-type recovery environment.

Figure 27 shows the environment on entry to the function routine for SSI function
code 54.

Input Register Information
On entry to the function routine the general purpose registers contain:

Register Contents

0 Address of the SSCVT

1 Address of the SSOB control block

Regist er 1

Funct ion Dependent A r ea
(SSO BINDV)

’SSO B’ (SSO BI D)

Lengt h
(SSO BLEN)

Funct ion ID
(SSO BFUNC)

SSIB (SSO BSSIB)

SSIB

Subsyst em Nam e (SSIBSSNM)

’SSI B’ (SSI BID)

Lengt h (SSIBLEN)

SSVI

Version
(SSVIVER)

Lengt h
(SSVILEN)

SSO B

’SSVI ’ (SSVI ID)

Figure 27. Environment on Entry to the Function Routine for SSI Function Code 54

SSI Function Code 54

216 z/OS V1R4.0 MVS Using the Subsystem Interface

13 Address of a standard 18-word save area

14 Return address of the requestor of the service

15 Entry point address

Input Parameters
Input parameters for the function routine are:
v SSOB
v SSIB
v SSVI

SSOB Contents: The caller sets the following fields in the SSOB control block on
input:

Field Name Description

SSOBID Identifier ’SSOB’

SSOBLEN Length of SSOB control block

SSOBFUNC SSI function code 54 (SSOBSSVI)

SSOBSSIB Address of SSIB control block

SSOBINDV Address of function dependent area (SSVI control block)

SSIB Contents: The caller sets the following fields in the SSIB control block on
input:

Field Name Description

SSIBID Identifier ’SSIB’

SSIBLEN Length of SSIB control block

SSIBSSNM Subsystem name — name of the user provided subsystem invoked

SSVI Contents: See “Request Subsystem Version Information Call — SSI Function
Code 54” on page 55 for the format of the input SSVI that your function routine
expects to process.

Output Register Information
Upon exit from the function routine, the general purpose registers must contain:

Register Contents

0 — 12 Restored to contents on entry

14 Return Address

15 Return code

Return Code Information
Set register 15 to zero.

Output Parameters
Output parameters for the function routine are:
v SSVI

The function routine performs processing to return the subsystem version
information, and returns this information to the caller through settings, field updates,
and pointers to information contained in the SSVI control block.

SSI Function Code 54

Chapter 7. SSI Function Codes Your Subsystem Can Support 217

In addition, the information fields (For example, SSVIFMID, SSVIVERS, and
SSVICNAM) are defined by, and have meaning only to, the function routine.

SSVI Contents: If the function routine returned successfully to the caller, the
function routine may return the following information in the SSVI control block:

Field Name Description

SSOBRETN The function routine sets this field to SSVIOK (decimal 0).

SSVIRLEN The function routine sets this field to the number of bytes that is
used to return the requested information.

This value includes the fixed section as well as the system variable
section.

SSVIRVER The function routine sets this field to the version of the SSVI macro
used (SSVICVER).

SSVIFLEN The function routine sets this field to the length of the fixed header
output section (SSVIFSIZ).

SSVIASID A 2-byte field that contains the ASID of the subsystem if the
subsystem has an address space and supports the use of this field.

SSVIFMID The function routine sets this field (left-justified, and padded to the
right with blank (X’40’) characters) to the function routine’s FMID, if
available.

SSVIVERS The function routine sets this field (left-justified, and padded to the
right with blank (X’40’) characters) to the version of the subsystem
installed. The function routine defines and uses the version naming
conventions and meanings.

SSVICNAM The function routine sets this field (left-justified, and padded to the
right with blank (X’40’) characters) to the processing subsystem’s
common name. For example, a subsystem defined as ’JOHN’ might
choose to return the SSVICNAM value of ’JOHNNY’. The
subsystem defines the common name.

SSVIPLVL This 1-byte field contains the product level of the subsystem. The
content of the field is defined by the subsystem.

This field should only be used if the caller-supplied version in field
SSVIVER is greater than or equal to 2.

SSVISLVL This 1-byte field contains the service level of the subsystem. The
content of the field is defined by the subsystem.

This field should only be used if the caller-supplied version in field
SSVIVER is greater than or equal to 2.

SSVIUDOF The function routine sets this field to zero (there is no installation
variable output section).

SSVISDOF The function routine sets this field to the offset of the start of the
system variable section (same value as SSVIFLEN), if the function
routine wants to supply system variable information.

The DSECT SSVIVDAT mapping begins at this offset, within the
SSVI control block that the caller provided to the function routine.
The caller must provide an SSVI control block large enough to

SSI Function Code 54

218 z/OS V1R4.0 MVS Using the Subsystem Interface

contain the fixed section and system variable section beginning at
this offset (SSVISDOF) past the start of the fixed section
(SSVIHEAD).

The function routine may provide a system variable output section
that contains additional information returned to the caller and
mapped using SSVIVDAT. If it doesn’t provide this, the SSVISDOF
field must be set to zero.

The function routine sets the first halfword of this system variable
information section to the length of the system variable section (not
including itself) in the SSVIVLEN field, so that the first byte of the
character string starts past the SSVIVLEN field.

For example, the function routine may choose to return the
following character string to the caller:

,EXAMPLE_SWITCH=’NO’

The function routine places the length of the character string, 20
bytes (decimal) in the SSVIVLEN field, followed by the character
string, beginning at the SSVIDAT field. The first byte at the
SSVIDAT field contains an EBCDIC value for the comma in front of
the word ’EXAMPLE’.

Note that the comma is the first character of the character string
even if only a single keyword value is being returned. See the
“Request Subsystem Version Information Call — SSI Function Code
54” on page 215 for more information on the syntax of the returned
system variable sections. IBM recommends that your function
routine also use the same syntax conventions.

If the function routine returned unsuccessfully to the caller, the system function may
provide any of the following processing depending on the reasons for the
unsuccessful return:

v Insufficient Storage

The function routine has determined that the requestor has not supplied a
storage area large enough to contain the requested information. That is, the
caller has not provided a value in the SSVILEN field that is large enough to
contain both the fixed section, as well as any possible system variable section
(length plus actual data). The function routine therefore sets the following fields:

Field Name Description

SSOBRETN The function routine sets SSOBRETN to the value of SSVINSTR
(decimal 8).

SSVIRLEN The function routine sets SSVIRLEN to the amount of storage
needed to satisfy the request.

The function routine determines the SSVIRLEN value by adding
the length of the fixed header section (SSVIFSIZ) to the length of
the system variable output section, plus two bytes (for the length
value) of the returned string.

Suppose the caller in the example above only provided 30
decimal bytes for the returned information. Our function routine
would return decimal 70 in the SSVIRLEN field as follows:
1. 48 — decimal value of the defined symbol SSVIFSIZ
2. 2 — length of the SSVIVLEN field (2 bytes long)

SSI Function Code 54

Chapter 7. SSI Function Codes Your Subsystem Can Support 219

3. 20 — length of the character string
(,EXAMPLE_SWITCH=’NO’).

All other fields in the SSVI control block are not set by the function routine.

v Requestor does not provide a valid SSVI

The SSVI control block that is supplied by the caller should be validity-checked
by the function routine. The following validations are suggested:

– The SSOBINDV value in the SSOB control block should be non-zero.

– The SSVILEN field supplied by the caller should be equal to or greater than
SSVIMSIZ (an equated value within the SSVI).

– The SSVIID field supplied by the caller should contain the EBCDIC characters
’SSVI’.

– The SSVIVER field supplied by the caller should be non-zero.

The current version of the SSVICVER field is equated to SSVIVONE (decimal
1).

Future versions of the SSVI control block must have their version number
increased, so both the caller and the function routine are able to determine
what information is expected and provided.

If any of the above conditions are not true, the function routine must set the
SSOBRETN field as follows:

Field Name Description

SSOBRETN The function routine sets SSOBRETN to the value of SSVIPARM
(decimal 16).

All other fields in the SSVI control block are not set by the function routine.

v An abend or logical error within the function routine occurs

It is possible that an abend or logical error occurs in your routine. IBM supplies
an equate symbol for this return code. If your routine chooses to use it, the
function routine must set the following field:

Field Name Description

SSOBRETN The function routine sets SSOBRETN to the value of SSVIABLG
(decimal 24).

All other fields in the SSVI control block are not set by the function routine.

SSI Function Code 54

220 z/OS V1R4.0 MVS Using the Subsystem Interface

SMF SUBPARM Option Change Call — SSI Function Code 58
The SMF SUBPARM Option Change call (SSI function code 58) allows a user
subsystem to be notified that the SUBPARM option in the SMF parmlib member for
their subsystem has been changed.

Type of Request
Directed SSI call.

Use Information
Your subsystem can use SSI function code 58 when it wants to be notified of
changes that have been made to the SMF SUBPARM parameter. The SMF
SUBPARM parameter is used to pass accounting information to the subsystem.

Issued to
v The subsystem whose SUBPARM option was changed by the SET SMF or

SETSMF command.

Related SSI Codes
None.

Related Concepts
You need to understand:
v The interaction between the SMF parmlib option (SUBPARM), the SMF macros

(SMFSUBP and SMFCHSUB) and this function code. See “Passing Accounting
Parameters to Your Subsystem” on page 160 for a description of this relationship
and an example of the associated processing.

Environment
Review “Function Routines/Function Codes” on page 153, which describes both the
general environment on entry to your function routine and other programming
considerations that your function routine should take into account.

If you decide to set up your subsystem to handle SMF SUBPARM option change
calls, make sure that your function routine is in place before you enable the
subsystem to handle SSI function code 58. IBM recommends that you use the
IEFSSVT macro to notify MVS that your subsystem should be given control
whenever SMF SUBPARM Option Change calls are made. IEFSSVT macro
services are available only to dynamic subsystems. Subsystems that are not
dynamic can still use the IEFJSVEC service; see “Building the SSVT” on page 259
and “Enabling Your Subsystem for New Functions” on page 263 for more
information.

Data areas commonly used by SSI function code 58 are mapped by the following
mapping macros. IBM recommends you include them in your function routine:
v IEFSSOBH
v IEFJSSIB
v IEFSSSM

The function routine receives control in the following environment:

Minimum authorization Supervisor state with PSW Key 0
Dispatchable unit mode Task
AMODE 24-bit or 31-bit
Cross memory mode PASN=HASN=SASN
ASC mode Primary
Interrupt status Enabled for I/O and external interrupts
Locks No locks held

SSI Function Code 58

Chapter 7. SSI Function Codes Your Subsystem Can Support 221

Control parameters The SSOB, SSIB, and SSSM control blocks reside in storage
below 16 megabytes.

Recovery None

Figure 28 shows the environment at the time of the call for SSI function code 58.

Input Register Information
On entry to the function routine the general purpose registers contain:

Register Contents

0 Address of the SSCVT

1 Address of the SSOB control block

13 Address of a standard 18-word save area

14 Return address

15 Entry point address

On entry to the function routine the access registers are unused.

Input Parameters
Input parameters for the function routine are:
v SSOB
v SSIB
v SSSM

SSOB Contents: SMF sets the following fields in the SSOB control block on input:

Funct ion Dependent A r ea
(SSO BINDV)

’SSO B’ (SSO BI D)

Lengt h
(SSO BLEN)

Funct ion ID
(SSO BFUNC)

SSIB (SSO BSSIB)

SSIB

Subsyst em Nam e (SSIBSSNM)

’SSI B’ (SSI BID)

Lengt h (SSIBLEN)

SSSM

Lengt h
(SSSM LEN)

Regist er 1

SSO B

’1’b SSO B

Reserved

C onstant

C om m and C art (SSSTO KN)

Figure 28. Environment at Time of Call for SSI Function Code 58

SSI Function Code 58

222 z/OS V1R4.0 MVS Using the Subsystem Interface

Field Name Description

SSOBID Identifier ’SSOB’

SSOBLEN Length of the SSOB control block

SSOBFUNC SSI function code 58 (SSOBSMAC)

SSOBSSIB Address of SSIB control block

SSOBINDV Address of the function dependent area (SSSM control block)

SSIB Contents: SMF sets the following fields in the SSIB control block on input:

Field Name Description

SSIBID Identifier ’SSIB’

SSIBLEN Length of the SSIB control block

SSIBSSNM Subsystem name — name of the subsystem that this SMF
SUBPARM Option Change call is directed to.

SSSM Contents: SMF sets the following fields in the SSSM control block on input:

Field Name Description

SSSMLEN Length of the SSSM control block

SSSMFLGS Flags
v SSSMSMFA — SMF is active

The following flags identify the source of the SUBPARM parameter
value for the subsystem:
v SSSMMEMB — Value from the parmlib member
v SSSMRPLY — Value from the operator reply
v SSSMDFLT — Value from the default table
v SSSMCONF — Value changed due to conflicts
v SSSMCHNG — Value changed by IPL or SET processing

You can use the following fields to communicate with the console that issued the
SET SMF=xx or SETSMF command being processed:
SSSMCNID Command console ID
SSSTOKN Command CART

Output Register Information
Upon exit from the function routine, the general purpose registers must contain:

Register Contents

0 — 12 Restored to contents on entry

14 Return address

15 Return code

Return Code Information
Upon return to the caller of SSI function code 58 (MVS or SMF), register 15
contains the smallest return code from the SSI and SSOBRETN contains the
largest return code associated with the smallest return code from the SSI.

For MVS to process broadcast functions properly, you must use the following return
code conventions for function routines that handle broadcast calls. When a routine
returns control to the SSI:

SSI Function Code 58

Chapter 7. SSI Function Codes Your Subsystem Can Support 223

v Set register 15 to 0.
v Set the SSOBRETN field in the SSOB control block to one of the following:

Return
Code

(Decimal) Meaning

0 The function routine recognized the request but did not process
it.

4 The function routine recognized the request and processed it.

Restrictions
The SMF SUBPARM Option Change call cannot be made to subsystems with the
following names:
v SYS
v JES2
v JES3
v STC
v TSO
v ASCH.

Example
See “Passing Accounting Parameters to Your Subsystem” on page 160 for an
example of the use of the SMF SUBPARM Option Change call.

Installation Supplied Subsystem
See “Passing Accounting Parameters to Your Subsystem” on page 160 for an
example of the relationship of this function code to the options specified in the SMF
parmlib member.

SSI Function Code 58

224 z/OS V1R4.0 MVS Using the Subsystem Interface

Tape Device Selection Call — SSI Function Code 78
The Tape Device Selection call (SSI function code 78) allows the subsystem
function routine to receive control at least once for each job step JCL request or
dynamic allocation invocation for a tape device. The function routine can then
change the criteria the system uses when it selects tape devices to allocate.

Type of Request
Broadcast SSI call.

Use Information
Use SSI function code 78 to allow a subsystem to get control to influence the
criteria the system uses in selecting the tape devices to allocate.

Issued to
v All active subsystems that indicate they support the Tape Device Selection call

(SSI function code 78).

Related SSI Codes
None.

Related Concepts
You should understand the process the system uses to select the tape devices to
be allocated. The following steps describe how the system processes the tape
requests for each job step:

1. The system initializes fields in the tape allocation subsystem interface mapping
(IEFSSTA, called SSTA in this section). The SSTA mapping consists of:

v An SSTA header (one for each jobstep) that contains general information
about the jobstep

v A DD section (one for each DD statement or dynamic allocation request
requiring a non-SMS managed tape device) that contains information about
the DD

v A device request section (one for each device indicated on the DD statement)
that contains information about the tape device request

v An eligible device array entry (one for each eligible device) that contains
selection criteria.

In initializing the eligible device array entry, the system considers the following
facts about the tape device requests and the characteristics of available
devices:

v The type of requests (such as a request for a private, scratch, or specific
volume)

v Unit information on the requests

The system uses the eligible device table (EDT) to determine which devices
are eligible to satisfy the request.

v Characteristics of each eligible tape device, such as:
– Does the device already have the requested volume mounted
– Is the device online or offline
– Is the device dedicated or automatically switchable.

These characteristics are reflected in bits in the SSTAIBMM field.

Several of the IBM eligibility bits are set based on whether a volume is
already mounted on the device. The following helps you understand the
conditions that can cause a volume to be already mounted on a device.

SSI Function Code 78

Chapter 7. SSI Function Codes Your Subsystem Can Support 225

A volume may already be mounted for any one of the following conditions:

– A volume was premounted as the result of a MOUNT command issued by
the operator

– A volume was inserted into the drive by the operator, but no MOUNT
command was issued by the operator

– A volume is mounted on a drive because a prior step in the same job
passed a data set to a subsequent step or the request specified RETAIN

– A volume is mounted on a drive because it is in use by another job

Within an eligible device array entry, the order of the characteristics reflects
their relative importance. For example, whether a specific device is mounted
is more important than whether the device is automatically switchable.

The system then builds a list of eligible tape devices and associated eligibility
values generated from bits in the SSTAIBMM field in the eligible device array
entry.

At this point, the system issues SSI function code 78, passes the SSTA
(including the eligible device array), and gives your Tape Device Selection
function routine a chance to affect the selection. When the function routine
gets control, it can set bits in the SSTAUSRM field. If SSTAUSRM bits are
set, the system generates eligibility values that combine SSTAUSRM settings
and SSTAIBMM settings.

2. Based on the list of eligible devices and associated eligibility values built in step
1, the system selects the optimal device to allocate for the request.

Table 3 shows the logical relationship between the system settings and the user
settings in the eligible device array entry. The first column shows the 1-bit fields the
system sets in SSTAIBMM; the second column shows the 1-bit fields the function
routine can set in SSTAUSRM. The criteria are listed in order of importance, from
top to bottom. For example, the most important criteria are:
v SSTAINEL, a user field that can remove the device from consideration
v SSTADMND, a system field that identifies the device as the one specified on the

DD statement.

The table shows how the user criteria interleave with system criteria.

Table 3. Relationship between System and User Criteria

Importance System criteria (SSTAIBMM) User criteria (SSTAUSRM)

1 SSTAINEL

2 SSTADMND

3 SSTAUS01

4 SSTAUS02

5 SSTAONUN

6 SSTAUS03

7 SSTAUS04

8 SSTANAFH

9 SSTAUS05

10 SSTAUS06

11 SSTASPCM

SSI Function Code 78

226 z/OS V1R4.0 MVS Using the Subsystem Interface

Table 3. Relationship between System and User Criteria (continued)

Importance System criteria (SSTAIBMM) User criteria (SSTAUSRM)

12 SSTAUS07

13 SSTAUS08

14 Generic device type not specified by a bit

15 SSTAUS09

16 SSTAUS10

17 SSTAACL1

18 SSTAUS11

19 SSTAUS12

20 SSTAACL2

21 SSTAUS13

22 SSTAUS14

23 SSTAACL3

24 SSTAUS15

25 SSTAUS16

26 SSTAVOLM

27 SSTAUS17

28 SSTAUS18

29 SSTANVOL

30 SSTAUS19

31 SSTAUS20

32 SSTAWVOL

33 SSTAUS21

34 SSTAUS22

35 SSTAAVOL

36 SSTAUS23

37 SSTAUS24

38 SSTAANAS

39 SSTAUS25

40 SSTAUS26

Descriptions of SSTAIBMM fields are found in “Input Parameters” on page 231;
descriptions of SSTAUSRM fields are found in “Output Parameters” on page 234.

Environment
Review “Function Routines/Function Codes” on page 153, which describes both the
general environment on entry to your function routine and other programming
considerations that your function routine should take into account.

If you decide to set up your subsystem to handle tape device selection calls, make
sure that your Tape Device Selection function routine is in place before you enable
the subsystem to receive SSI function code 78. IBM recommends that you use the
IEFSSVT macro to notify MVS that your subsystem should be given control only
when tape selection calls are made. IEFSSVT macro services are available only to

SSI Function Code 78

Chapter 7. SSI Function Codes Your Subsystem Can Support 227

dynamic subsystems. Subsystems that are not dynamic can still use the IEFJSVEC
service. See “Building the SSVT” on page 259 and “Enabling Your Subsystem for
New Functions” on page 263 for more information.

Data areas commonly referenced are mapped by the following mapping macros.
IBM recommends you include them in your function routine:
v CVT
v IEFJESCT
v IEFSSOBH
v IEFJSSIB
v IEFSSTA

The function routine receives control in the following environment:

Minimum authorization Supervisor state with PSW key 1
Dispatchable unit mode Task
AMODE 31-bit
Cross memory mode PASN=HASN=SASN
ASC mode Primary
Interrupt status Enabled for I/O and external interrupts
Locks Serialization for allocation resources is held by Allocation
Control parameters The SSIB, SSOB, and SSTA control blocks can reside either

above or below 16 megabytes.
Recovery The function routine must provide an ESTAE-type recovery

environment. See z/OS MVS Programming: Authorized
Assembler Services Guide.

The following figures show the environment at the time of the call for SSI function
code 78.

SSI Function Code 78

228 z/OS V1R4.0 MVS Using the Subsystem Interface

(SSOBINDV)

SSIB

Subsystem Name (SSIBSSNM)

'SSIB' (SSIBID)

Length (SSIBLEN)

Register 1

SSTA Header

Flag Field
(SSTAFLGS) Reserved

System name (SSTASNAM)

Job Name (SSTAJNAM)

'SSTA' (SSTAID)

Jobstep name

Proc name

(SSTASTNM)

First DD Section

Step number (SSTASTPN)

Number of DDs (SSTANDDS)

First DD Section (SSTADDAP)

Function Dependent Area

SSIB (SSOBSSIB)

Length
(SSOBLEN)

'SSOB' (SSOBID)

SSOB

Function ID
(SSOBFUNC)

Figure 29. Environment at Time of Call for SSI Function Code 78

SSI Function Code 78

Chapter 7. SSI Function Codes Your Subsystem Can Support 229

Input Register Information
On entry to the function routine the general purpose registers contain:

Register Contents

0 Address of the subsystem’s SSCVT

1 Address of the SSOB

13 Address of a standard 18-word save area

Volume Serial Number

(SSTAVOLI)

SSTA
REQT

SSTA
UREQ

SSTAVUID

Eligible Device Array (SSTADEVP)

Next Device Request (SSTADRAN)

SSTA
NDEV

Device Number (SSTADNUM)

IBM Mask (SSTAIBMM)

User Mask (SSTAUSRM)

Eligible Device Array

SSTA
PREF

User Mask (SSTAUSRM)

One 12-byte entry for each
eligible device. SSTANDEV
in the Device Request section
identifies how many.

SSTA
DDF1

SSTA
DDF2

Reserved

Concatention position (SSTACPOS)

Number of Device Request Section
(SSTANDRA)

First Device Request Section
(SSTADRAP)

Next DD Section (SSTADDAN)

DDname (SSTADDN)

JFCB for this DD (SSTAJFCB)

DD Section

Figure 30. Continuation of Environment at Time of Call for SSI Function Code 78

SSI Function Code 78

230 z/OS V1R4.0 MVS Using the Subsystem Interface

14 Return address

15 Entry point address

Input Parameters
Input parameters for the function routine are:
v SSOB
v SSIB
v SSTA

SSOB Contents: MVS sets the following fields in the SSOB on input:

Field Name Description

SSOBID Identifier ’SSOB’

SSOBLEN Length of the SSOB (SSOBHSIZ) control block

SSOBFUNC SSI function code 78 (SSOBTALC)

SSOBSSIB Address of the SSIB control block

SSOBRETN Return code value set by previously invoked function routine, or
zero

SSOBINDV Address of the function-dependent area (SSTA control block)

SSIB Contents: MVS sets the following fields in the SSIB on input:

Field Name Description

SSIBID Identifier ’SSIB’

SSIBLEN Length of the SSIB (SSIBSIZE)

SSIBSSNM Name of the subsystem enabled to receive this function code

SSTA Header Contents: There is one SSTA header for each job step or dynamic
allocation that requests at least one non-SMS managed, non-DUMMY,
non-SUBSYStem tape device. IBM sets the following fields on input:

Field Name Description

SSTAID Identifier ’SSTA’

SSTAVERS Current SSTA version number

SSTAFLGS Type of call, such as:
v First call for this job step or dynamic allocation invocation
v Call from allocation recovery
v Call from tape allocation retry processing

SSTASNAM System name

SSTAJNAM Job name

SSTASTNM Job step name or procedure name and job step name. If the job
step is not a procedure step, SSTASTNM is an 8-byte job step
name and an 8-byte reserved field. If the job step is a procedure
step, SSTASTNM is an 8-byte procedure step name and an 8-byte
job step name of the step that called the procedure.

SSTASTPN Step number

SSTANDDS Number of DDs

SSI Function Code 78

Chapter 7. SSI Function Codes Your Subsystem Can Support 231

SSTADDAP Pointer to the first DD array for this job step. Set to zero if no DD
array entries exist.

SSTAHDRL Length of the SSTA header

DD Array Entry: There is one DD array entry for each DD statement or dynamic
allocation that requests a non-SMS managed, non-DUMMY, non-SUBSYStem tape
device. IBM sets the following fields on input:

Field Name Description

SSTADDN DD name. Blank if other than the first DD in a concatenation

SSTAJFCP Pointer to the JFCB for this DD section

SSTACPOS Concatenation position. Set to 1 for the first DD in a concatenation,
2 for the second DD, etc. Set to 1 for a DD that is not part of a
concatenation

SSTADDF1 DD level information, including DISP and GDG specifications

SSTADDF2 DD level information byte 2, including unit affinity indicator

SSTANDRA Number of devices requested

SSTADRAP Pointer to the first device request section for this DD

SSTADDAN Pointer to the next device request section

SSTADDAL Length of one DD array entry

Device Request Array Entry: There is one device request array entry for each
device or unit requested on a non-SMS managed, non-DUMMY, non-SUBSYStem
DD statement or dynamic allocation reqest. For example, UNIT=(TAPE,2) would
generate two device request array entries. IBM sets the following fields on input:

Field Name Description

SSTAVOLI Volume serial number. Relevant only for a specific request
(indicated by bit SSTASPEC in field SSTAREQT)

SSTANDEV Number of eligible devices

SSTAREQT Device request information flags:

v SSTAPRV — indicates a private request

v SSTASPEC — indicates a specific request

v SSTADEFR — indicates volume mounting is deferred

SSTAVUID Volume unit ID for affinity

SSTADEVP Pointer to the eligible device array for this DD

SSTADRAN Pointer to the next device request array entry

SSTADRAL Length of one device request array entry

The function routine can set the SSTAUDFR and SSTAUPRF fields in the device
request section. See “Output Parameters” on page 234.

Eligible Device Array Entry: There is one eligible device array entry for each
device eligible for a particular DD array entry. IBM sets the following fields on input:

Field Name Description

SSTADNUM Device number, in EBCDIC. Example: The representation of device
number 5B0 would be F0F5C2F0. You can use this number as

SSI Function Code 78

232 z/OS V1R4.0 MVS Using the Subsystem Interface

input to EDTINFO to obtain further information about the device,
such as its generic device type and any esoteric service groups of
which this device is a part. (See z/OS MVS Programming:
Assembler Services Reference ABE-HSP, GC28-1910, for
additional information about EDTINFO.)

SSTAIBMM Following are the eligibility bits that the system sets. (Unless
otherwise specified, the IBM eligibility bits apply to both dedicated
and automatically switchable devices.)

Field Name Description

SSTADSK This device is skipped for this request

SSTADMND This device is demanded by this request. (A request
is a demand request when the UNIT parameter
contains a specific device number, for example,
UNIT=237.)

SSTAONUN The device is online and unallocated

SSTANAFH This automatically switchable device is not assigned
to another system

SSTASPCM The volume mounted on this device is the one
requested

SSTAACL1 Either no automatic cartridge loader (ACL) is
installed and this is a specific request, or the ACL is
active and the request is nonspecific (public or
private)

SSTAACL2 The installed ACL is inactive

SSTAACL3 Either the ACL is active and this is a specific
request, or no ACL is installed and this is a
nonspecific request (public or private) request

SSTAVOLM One of the following conditions can occur:

v A volume is not mounted on this device. This is a
specific volume request. The device is
automatically switchable and the last volume
dismounted from this device is the needed
volume.

v A volume is mounted on this device. This is a
non-specific request for a public volume and the
volume currently mounted on this device is
public.

SSTANVOL A volume is not mounted on this device for one of
these possible conditions:

v This is a specific volume request. The device is
automatically switchable and the last volume
dismounted from this device is not the needed
volume.

v This is a non-specific request.

v This device is not automatically switchable.

SSTAWVOL A volume is mounted on this automatically
switchable device, and it matches the volume

SSI Function Code 78

Chapter 7. SSI Function Codes Your Subsystem Can Support 233

needed for this specific request. However, the last
volume dismounted from this device also matches.

SSTAAVOL A volume is mounted on this device and one of the
following conditions is true:

v This is a specific volume request and the volume
currently mounted on this device is automatically
switchable and the last volume dismounted from
this device is not the needed volume.

v This is a specific volume request and there is a
volume currently mounted on this device, but it is
not the requested volume.

v This is a non-specific, private request for any
volume.

v This is a non-specific, public request and the
volume currently mounted is private.

SSTANAS This device is not automatically switchable

The function routine can set the SSTAPREF and SSTAUSRMM fields in the eligible
device array entry. See “Output Parameters”.

Output Register Information
Upon exit from the function routine, the general purpose registers must contain:

Register Contents

0 Used as a work register by the system

1 Address of the SSOB

2 — 13 Restored to contents on entry

14 Return address

15 Return code

Return Code Information
For MVS to process broadcast functions properly, you must use the following return
code conventions for function routines that handle broadcast calls. When a routine
returns control to the SSI:
v Set register 15 to 0.
v Set the SSOBRETN field in the SSOB to one of the following:

Return
Code

(Decimal) Meaning

0 The function routine recognized the request but did not process
it.

4 The function routine recognized the request and processed it.

Output Parameters
Output parameters for the function routine are:

Field Name Description

SSTAUDFR The field in device request section that forces a request to have
mounting deferred until the dataset is actually opened

SSTAUPRF The field in the device request section that indicates that the

SSI Function Code 78

234 z/OS V1R4.0 MVS Using the Subsystem Interface

function routine is to override the actions the system takes if many
devices have the same eligibility value. In other words, the system
turns to this field to break a tie when more than one tape device
has the same attributes.

v If the function routine does not code this field, the system makes
a random selection from among the devices with equal attributes.

v If the function routine codes this field, it must tell the system, in
the SSTAPREF entry for each eligible device, how to break a tie.

With SP5.2 and any subsequent releases, allocation examines all
eligible devices on an individual basis. Therefore, it is unlikely that
the system will need a tie-breaker.

SSTAPREF The field in the eligible device array entry that contains the
preference value for the system to use. This field allows the
function routine to influence the allocation of devices when all other
attributes are the same. Use this field only if you set SSTAUPRF.

SSTAUSRM The field in the eligible device array entry that allows the function
routine to add its own criteria to the eligibility mask that the system
associates with each eligible device:

Field Name Description

SSTAINEL Mark the device ineligible

SSTAUSnn The remaining 1-bit fields, SSTAUS01 through
SSTAUS26, can be defined and set by your
function routine. Table 3 on page 226 shows how
each of these bits relates to the system mask
SSTAIBMM.

SSTAEDAL Length of one device request array entry

Restrictions
SSI function code 78 is not available to change the selection of SMS-managed or
JES3-managed tape devices

Note that while MVS allocation processes your function routine, it is not processing
other allocation requests. This might degrade performance.

Example
An installation writes a Tape Device Selection function routine to ensure that tape
devices 270 and 271 are available only for HSM tape requests. (This example is
included in SYS1.SAMPLIB as member IEFTASSI.)
TAPESSI CSECT
TAPESSI AMODE 31
TAPESSI RMODE ANY
******************* START OF SPECIFICATIONS ***************************
* *
01 NAME= *
* *
01 TYPE= Sample Subsystem *
* *
01 FIRST ELIGIBLE PRODUCT= HBB5520 *
* *
01 FIRST INELIGIBLE PRODUCT= HBB5510 *
* *
01 OPERATION= *
* This is a sample taple allocation subsystem. It will *
* reserve devices 270 and 271 for only HSM jobs. *

SSI Function Code 78

Chapter 7. SSI Function Codes Your Subsystem Can Support 235

* *
* 1. Chain save areas *
* 2. See if the JOBNAME is HSM* *
* 3. If it is not then will ensure that *
* devices 270 and 271 are not eligible *
* 4. Return to SSI *
* *
03 SOFTWARE DEPENDENCIES: *
* *
04 REQUIRED PRODUCTS= HBB5520 *
* *
02 OUTPUT: *
* *
03 MSGIDS= NONE *
* *
03 ABENDCODES= NONE *
* *
******************** END OF SPECIFICATIONS ****************************

* *
* Base register: 12 *
* *
* Other register use: *
* 10 SSCVT *
* 2 SSOB *
* 9 SSIB *
* 8 SSTA *
* *
* Attributes: *
* This routine must be reentrant and reside in a library *
* accessible at the time subsystem initialization occurs. *
* Supervisor state, AMODE(31), RMODE(ANY) *
* *

* Chain saveareas *

USING TAPESSI,12
SAVE (14,12) Save caller registers
LR 12,15 Establish module base register

*
LR 10,0 Establish addressability
USING SSCT,10 to the SSCVT
LR 2,1 Establish addressability
USING SSOB,2 to the SSOB

*
GETMAIN R,LV=84,SP=230 Get working storage
ST 13,4(1) Chain saveareas forward
ST 1,8(13) Chain saveareas backward
LR 13,1 Point to this module’s savearea
LR 11,1 Point to dynamic storage
USING DYNAM,11 Base dynamic storage

*

* Validate the request *

L 9,SSOBSSIB Establish addressability
USING SSIB,9 to the SSIB
CLC SSIBSSNM,SSCTSNAM Verify the subsystem name
BNE ERROR This should never happen
L 8,SSOBINDV Pointer to function dependent

* area

* Check for job name beginning with HSM *

SSI Function Code 78

236 z/OS V1R4.0 MVS Using the Subsystem Interface

USING SSTA,8 Set basing
CLC HSMNAME,SSTAJNAM Check job name
BE NOCHECK Skip checks if not HSM*

* Job name does not begin with HSM so must not allow devices *
* 0270 and 0271 to be eligible to satisfy request. *

L 7,SSTADDAP Get address of DD entries
USING SSTADDA,7 Base DD entries
L 4,SSTANDDS Get number of DDs
LTR 4,4 Check for zero
BZ NOCHECK If zero then no DDs to check
ST 4,NUMDDS Else save in local storage

DDLOOPS EQU * Start looping through DDs
L 6,SSTADRAP Get address of first request
USING SSTADRA,6 Base request entries
L 4,SSTANDRA Get number of requests
LTR 4,4 Check for zero
BZ DDLOOPE If zero then no requests
ST 4,NUMREQS Else save in local storage

REQLOOPS EQU * Start looping through requests
L 5,SSTADEVP Get address of first device
USING SSTAEDA,5 Base device entries
LH 4,SSTANDEV Get number of devices eligible
LTR 4,4 Check for zero
BZ REQLOOPE If zero then no devices
ST 4,NUMDEVS Else save in local storage

* Check each eligible device entry to make sure that devices *
* 0270 and 0271 are not eligible to this request. *

DEVLOOPS EQU * Start looping through devices

CLC SSTADNUM,HSMDEV1 Is device reserved for HSM?
BE MAKEINEL Yes, go make ineligible
CLC SSTADNUM,HSMDEV2 Is device reserved for HSM?
BNE DEVLOOPE No, bypass making ineligible

MAKEINEL EQU *
OI SSTAUSE1,B’10000000’ Mark device ineligible

DEVLOOPE EQU * End of eligible device loop
LA 3,12 Get size of SSTAEDA entry
ALR 5,3 Add to pointer to get next
L 4,NUMDEVS Get local counter
LA 3,1 Get amount to decrement count
SLR 4,3 Decrement count
ST 4,NUMDEVS Save device count
LTR 4,4 Check device count
BNZ DEVLOOPS Loop back if more to process

REQLOOPE EQU * End of request loop
L 6,SSTADRAN Get address of next request
L 4,NUMREQS Get local counter
LA 3,1 Get amount to decrement count
SLR 4,3 Decrement count
ST 4,NUMREQS Save request count
LTR 4,4 Check request count
BNZ REQLOOPS Loop back if more to process

DDLOOPE EQU * End of DD loop
L 7,SSTADDAN Get address of next DD entry
L 4,NUMDDS Get local counter
LA 3,1 Get amount to decrement count
SLR 4,3 Decrement count
ST 4,NUMDD Save DD count
LTR 4,4 Check DD count
BNZ DDLOOPS Loop back if more to process

NOCHECK EQU *
MVC SSOBRETN,=F’0’ Indicate function success
B RETURN

SSI Function Code 78

Chapter 7. SSI Function Codes Your Subsystem Can Support 237

ERROR EQU *
MVC SSOBRETN,=F’20’ Indicate function failure

* Return to the SSI *

RETURN EQU *

L 8,4(13) Pointer to caller’s savearea
FREEMAIN R,LV=84,A=(13),SP=230
LR 13,8
LM 14,12,12(13) Restore caller’ registers
LA 15,0 RC=0
BSM 0,14 Return to the SSI

*
HSMNAME DC CL3’HSM’ HSM Jobname
HSMDEV1 DC CL4H’270’ Device reserved for HSM
HSMDEV2 DC CL4H’271’ Device reserved for HSM
*
DYNAM DSECT Dynamic storage
SAVEAREA DS 18F Module save area
NUMDDS DS F Number of DDs
NUMREQS DS F Number of requests
NUMDEVS DS F Number of eligible devices
*

IEFJSCVT
IEFSSOBH
IEFJSSIB
IEFSSTA
END

SSI Function Code 78

238 z/OS V1R4.0 MVS Using the Subsystem Interface

Chapter 8. Troubleshooting Errors in Your Subsystem

This chapter describes common types of errors that occur when you are using
subsystems, and includes steps you can take to troubleshoot these errors. Errors
can occur when you are:
v Defining your subsystem to MVS
v Processing a subsystem function request

Handling Initialization Errors
If you specified a suffix on the SSN system parameter and it does not exist, the
system issues the following message:

IEF758I SUBSYSTEM AVAILABILITY LIMITED
DESCRIPTION NOT FOUND IN SYS1.PARMLIB

For an IPL, do not define a subsystem more than once in a combination of
IEFSSNxx members that can be used together or within a single member. (The
same subsystem can appear in two different IEFSSNxx members when the
members will not be used together.) If MVS detects a duplicate name, the duplicate
subsystem is not defined and its initialization routine does not receive control. The
system issues the following message:

IEFJ003I DUPLICATE SUBSYSTEM subname NOT INITIALIZED

If you specified an initialization routine (yyyyyyyy) in IEFSSNxx but the system
could not locate the initialization routine, the system issues the following message:

IEFJ004I SUBSYSTEM subname NOT INITIALIZED - initrtn NOT FOUND

If you get this message, the subsystem will be defined to the system but not
initialized, so jobs which require the functions of this subsystem may fail.

If you specify an initialization routine in IEFSSNxx but an abend occurs in the
initialization routine (while the system was initializing the subsystem), the system
issues the following message:

IEFJ005I subname INITIALIZATION ROUTINE initrtn ABENDED

If you get this message, examine the DUMP data set to find which subsystem
initialization routine failed. If the abend occurred during the processing of an
initialization routine specified in IEFSSNxx, a dump is requested only if the
initialization routine does not request one first. If you are coding an initialization
routine, you should provide recovery and consider whether you want a dump if a
problem occurs.

If problems occur when the system tries to obtain storage to build control blocks for
a subsystem, the system issues the following message:

IEFJ006I subname SUBSYSTEM UNAVAILABLE, INSUFFICIENT STORAGE

If you get this message, see MVS/ESA SP V4 System Messages manuals for more
information.

If an abend occurred while the system was initializing a subsystem and the system
requests a dump, the system issues the following message:

IEFJ007I A SYSTEM ERROR HAS OCCURRED DURING INITIALIZATION OF
SUBSYSTEM subname

© Copyright IBM Corp. 1988, 2002 239

If you get this message, examine the DUMP data set to identify the problem.

If an incorrect keyword is found in IEFSSNxx, the following message is written:
IEFJ001I memname LINE line-number: ERROR IN SUBSYSTEM DEFINITION,

REFER TO HARDCOPY LOG

If you get this message, the system continues processing the rest of IEFSSNxx,
and you should correct the keyword indicated. The system does not process the
subsystem definition containing the incorrect keyword.

Handling Function Request Errors

NOT Programming Interface Information

When you are troubleshooting errors during SSI function request processing, do the
following:
v Capture the system dump
v Identify the type of error
v Determine the cause of the error.

Capturing the System Dump
If an abend occurs while processing a subsystem function request, the SSI requests
a dump (unless a subsystem function routine takes one first). The dump title is
similar to the following:

TITLE=COMPON=SSI,COMPID=5752SC1B6,ISSUER=IEFJSaaa,
MODULE=IEFJbbbb,ABEND=xxx,REASON=yyyyyyyy DUMP

The issuer is one of the following:
v IEFJSARR, if the caller of the SSI is in task mode and holds no locks
v IEFJSFRR, if the caller of the SSI is in SRB mode or holds a lock
v IEFJSPCE, if the error is a recursive failure in the SSIs recovery.

For function request errors, the module is one of the following:

v IEFJRASP, for broadcast function requests

v IEFJSRE1, for directed function requests or for broadcast function requests that
have not yet been passed to IEFJRASP.

Other module names may appear for errors in SSI services other than routing
function requests.

Another variation of the dump title is the following:

DUMP TITLE=COMPON=SSI,COMPID=5752SC1B6,ISSUER=IEFJSaaa,
MODULE=IEFJbbbb,ABEND=xxx,REASON=yyyyyyyy,SNAME=zzzz

This variation will appear when SSI has determined that the error occurred in a
subsystem function routine. The dump title identifies the name of the failing
subsystem. SNAME refers to the subsystem, while zzzz is the name of the
subsystem.

After creating a subsystem vector table, the SSI retains only the addresses of the
function routines represented in the table, and therefore cannot identify the failing
routine by name.

Troubleshooting

240 z/OS V1R4.0 MVS Using the Subsystem Interface

The dump title indicates an SSI routine as the failing CSECT, even when the error
occurred in a subsystem function routine. After creating a subsystem vector table,
the SSI retains only the address of the function routines represented in the table,
and therefore cannot identify the failing routine by name.

Identifying the Type of Error
The most common causes of errors while processing function requests are:
v Function routine error
v Function routine address that is not valid
v Vector table address that is not valid
v Control block chain that is not valid
v Parameter list passed to the SSI that is not addressable
v SSI error

Identifying the Problem Type when the VRA is Available
You can identify the type of error when you examine the variable recording area
(VRA) in the summary dump or in the output from EREP. The available information
may include:
v A footprint area that contains a set of footprints and pointers describing the status

of the SSI request
v An English translation of the footprints
v The address of the SSOB control block describing the request
v The address of the SSIB control block identifying the subsystem to which the

request is directed
v The address of the SSCVT associated with the target subsystem
v The address of the active SSVT being used by the target subsystem to route

function requests
v The address of the target subsystem function routine
v The name of the failing IEFJFRQ exit routine
v The return address of the SSI’s caller

The actual information may vary, depending on the type and location of the error.

The English translation of the footprints identifies the point at which the error
occurred, and may include one of the following:

v Abend in the function routine

The error occurred when the SSI transferred control to the subsystem function
routine. The error is probably due to one of the following:

– The function routine address in the subsystem vector table is not valid

– The function routine failed. In this case, either the function routine did not
establish its own recovery, or it percolated to the SSI’s recovery.

v Abend in IEFJFRQ routine

The error occurred in an exit routine associated with the IEFJFRQ exit point. The
VRA contains the name of the failing exit routine.

v Error referencing the SSVT

The error occurred when the SSI tried to reference an SSVT control block that
was not SSI-managed, but that was being used by the subsystem to route its
requests.

v Error referencing the SSCVT

The error occurred when the SSI tried to reference the SSCVT describing the
target subsystem. The target subsystem is either not dynamic, or is dynamic but
is not using an SSI-managed SSVT control block to route function requests.

v Error locating the subsystem

Troubleshooting

Chapter 8. Troubleshooting Errors in Your Subsystem 241

The error occurred when the SSI tried to locate system control blocks associated
with the target subsystem.

v Error validating the request

The error occurred when the SSI tried to validate the SSOB/SSIB control block
chain describing the function request.

Contact the IBM Support Center for any other footprints that you may receive.

Identifying Problem Type when the VRA is not Available
You can identify the type of error when the VRA is not available by checking the
PSW and the registers at the time of the error as follows:

v If the PSW equals register 15, it probably indicates that the subsystem function
routine address in the SSVT is not valid.

v If the PSW contains a valid address in a module other than IEFJSRE1 or
IEFJRASP, it is probably a subsystem function routine error. The error occurred
in this routine.

v If the PSW contains a valid address in IEFJSRE1 or IEFJRASP, the error
occurred while referencing subsystem related control blocks, the input parameter
list, or in the SSI. Examine the SSCVT chain pointed to by the JESSSCT field for
pointers that are not valid. The SSIDATA IPCS subcommand displays the
subsystems defined to the SSI based on this chain, and may help identify a
problem. See z/OS MVS IPCS Commands or z/OS MVS Diagnosis: Reference
for more information.

Determining the Cause of the Error
You can determine the cause of the error by collecting the following information:
v Identity of the failing subsystem (or subsystem targeted by the request)
v Identity of the subsystem function requested
v Identity of the subsystem function routine
v Identity of the caller of the SSI
v Identity of the failing IEFJFRQ exit routine (if applicable)

Identifying the Failing Subsystem
The SSIBSSNM field of the SSIB control block identifies the subsystem targeted by
the current SSI request. The VRA contains the address of the SSOB control block
used to route the current request, and also contains the address of the SSIB if the
error did not occur while validating the SSOB control block chain. Note that the
SSIB and SSOB control blocks pointed to by the VRA may be copies of the control
blocks originally provided by the SSIs caller, and may contain information other than
what was provided in the original control blocks. The VRA contains the address of
the SSOB control block, and the SSOBSSIB field of the SSOB control block locates
the SSIB control block. The SSOBINDV field, if non-zero, points to the SSOB
extension originally provided by the caller.

You can also use the current SSCVT to identify the current subsystem. If the
address of the SSCVT appears in the VRA, the SSCTSNAM field identifies the
subsystem.

If the footprints indicate that the error occurred while locating the target subsystem,
and the SSI was processing a broadcast request, the VRA identifies the last
successfully processed subsystem. The VRA section with the header ’LAST
PROCESSED SSCVT’, lists the address of the last subsystem to which the current
request was successfully routed. Subsystems receive broadcast requests in the

Troubleshooting

242 z/OS V1R4.0 MVS Using the Subsystem Interface

order in which they appear in the SSCVT chain (anchored by the JESSSCT field of
the JESCT data area). The failing subsystem should be the next one in the SSCVT
chain.

Identifying the Requested Subsystem Function
To identify the requested subsystem function, check the SSOBFUNC field of the
SSOB control block. If the function code is not discussed in Chapter 3, “SSI
Function Codes Your Program Can Request” on page 13 or Chapter 7, “SSI
Function Codes Your Subsystem Can Support” on page 179, you may be able to
identify the function request type by checking the SSOB extension pointed to by the
SSOBINDV field. If the extension contains an eyecatcher, the format is normally
SSxx, and the mapping macro for the extension is IEFSSxx. The mapping macro
defines the value contained in the SSOBFUNC field, and describes the SSOB
extension.

Identifying the Subsystem Function Routine
To identify the subsystem function routine, check the VRA. It contains the address
of the failing routine. Identify the failing function routine by browsing backward in
storage to find an eyecatcher. The information in the eyecatcher should also help
identify the product with which the failing subsystem and function routine are
associated.

Note: The high-order bit of the function routine address in the VRA or SSVT
indicates the AMODE in which the routine receives control. When the
high-order bit is set, the SSI passes control to the function routine in AMODE
31.

Identifying the Caller of the SSI
To identify the caller of the SSI, check the VRA. It contains the return address of
the invoker of the IEFSSREQ macro (the caller of the SSI).

If the VRA is not available, locate the linkage stack associated with the work unit
that was in control at the time of the error, and use the IPCS linkage stack
formatting support to analyze the entries. The PSW from the current linkage stack
entry is the caller’s return address (assuming that the subsystem function routine
did not issue any instructions that caused additional linkage stack entries).

Browse backward through storage from the PSW address to find an eyecatcher and
identify the caller.

Identifying the Failing Exit Routine
To identify the failing exit routine, check the VRA. It contains the name of the
routine if the error occurred in an IEFJFRQ exit routine. Search for the module
name in the dump or review IBM or vendor product documentation to identify the
product or application with which it is associated. If the failing exit routine is
associated with a vendor product, contact the vendor to determine the cause of the
error.

End of NOT Programming Interface Information

Troubleshooting

Chapter 8. Troubleshooting Errors in Your Subsystem 243

244 z/OS V1R4.0 MVS Using the Subsystem Interface

Appendix A. Examples — Subsystem Interface Routines

This appendix has the following coding examples for the TSYS sample subsystem.

v “Example 1 — Subsystem Initialization Routine (TSYSINIT)”

This example documents Product-Sensitive Programming Interfaces and
Associated Guidance Information.

v “Example 2 — Subsystem Function Routine (WRITEIT)” on page 250

This example documents General-Use Programming Interfaces and Associated
Guidance Information.

v “Example 3 — Subsystem Function Routine (DELETEIT)” on page 252

This example documents General-Use Programming Interfaces and Associated
Guidance Information.

v “Example 4 — Subsystem Function Routine (LISTEN)” on page 253

This example documents Product-Sensitive Programming Interfaces and
Associated Guidance Information.

v “Example 5 — Subsystem Requesting Routine (TSYSCALL)” on page 255

This example documents General-Use Programming Interfaces and Associated
Guidance Information.

See Chapter 1, “Introduction to Subsystems and the Subsystem Interface (SSI)”,
Chapter 5, “Setting Up Your Subsystem”, and Chapter 2, “Making a Request of a
Subsystem” for information on coding subsystem routines.

Exampl e 1 — Subsystem Initialization Routine (TSYSINIT)

TSYSINIT RSECT
TSYSINIT AMODE ANY
TSYSINIT RMODE ANY
**
* Function: *
* This is the TSYS subsystem initialization routine. It is *
* called as the result of subsystem definition in any of the *
* following ways: *
* *
* IEFSSNxx parmlib member *
* SETSSI ADD command *
* IEFSSI REQUEST=ADD macro *
* *
* Initialization for the TSYS subsystem consists of the following *
* steps: *
* *
* 1. Establish recovery *
* 2. Issue the IEFSSVT REQUEST=CREATE macro to create the *
* subsystem vector table *
* 3. Issue the IEFSSI REQUEST=OPTIONS macro to specify *
* optional information specific to the TSYS subsystem *
* 4. Issue the IEFSSI REQUEST=PUT macro to store information *
* for use by the TSYS subsystem function routines *
* 5. Issue the IEFSSI REQUEST=ACTIVATE macro to enable the *
* TSYS subsystem to receive function requests *
* 6. Cancel recovery and return *
* *
* INPUT *
* Register 1 points to a two-word parameter list *
* - Word 1 = address of the SSCVT for the TSYS subsystem *
* - Word 2 = address of the JSIPL *

© Copyright IBM Corp. 1988, 2002 245

* *
* REGISTER USE *
* 1 - TSYSCB *
* 10 - SSCVT *
* 11 - JSIPL *
* 12 - Code register *
* 13 - Data register *
* *
* MACROS *
* CVT *
* ESTAE *
* FREEMAIN *
* GETMAIN *
* IHASDWA *
* IEFJESCT *
* IEFJSCVT *
* IEFSSI *
* IEFSSVT *
* IEFSSVTI *
* RETURN *
* SETRP *
* WTO *
* *
**

*
**
* Chain saveareas. *
**

USING TSYSINIT,12
SAVE (14,12) Save caller’s registers
LR 12,15 Establish module base register
LR 10,1 Save pointer to parameter list
GETMAIN R,LV=WORKALEN Get working storage
ST 13,4(1) Chain saveareas backward
ST 1,8(13) Chain saveareas forward
LR 13,1 Point to this module’s savearea

*
USING WORKAREA,13 Addressability to work area
L 11,4(10) Establish addressability
USING JSIPL,11 to the JSIPL
L 10,0(10) Establish addressability
USING SSCT,10 to the SSCVT

*
**
* Establish ESTAE *
**

XC ESTAED,ESTAED Clear ESTAE parameter list
L 8,=A(TSYSERR) Address of ESTAE routine
ESTAE (8),CT,PARAM=ARETRY,MF=(E,ESTAED)
LTR 15,15 If ESTAE failed
BNZ ESTAERR report it and return

*
**
* Invoke the IEFSSVT REQUEST(CREATE) macro to build and initialize *
* the vector table, using the static function routine input table. *
* The function routines reside in LINKLIB and must be loaded to *
* global storage to make them available to all address spaces. *
* Register notation is used to identify the output token for *
* demonstration purposes. *
**

LA 2,TOKEN1
*

IEFSSVT REQUEST=CREATE,SUBNAME=SSCTSNAM,SSVTDATA=ROUTINE1, *
OUTTOKEN=(2),LOADTOGLOBAL=YES,MAXENTRIES=ENTRIES, +
RETCODE=RC,RSNCODE=REASON, +
MF=(E,VTPARMS)

*

Appendix A — Examples

246 z/OS V1R4.0 MVS Using the Subsystem Interface

B TESTVTCR(15) Check return code
*
TESTVTCR EQU *

B ANCHORCB 0 - Processing successful
B VTERR 4 - Warning
B VTERR 8 - Invalid parameters
B VTERR 12 - Request failure
B VTERR 16 - Error loading subsystem
B VTERR 20 - System error
B VTERR 24 - SSI service not available

*
ANCHORCB EQU * Entry for vector table created

**
* Initialize and anchor the subsystem-specific control block used *
* by TSYS and its function routines. *
**

GETMAIN R,LV=CBLEN,SP=241 Get storage for TSYS control +
block

USING TSYSCB,1
XC TSYSCB,TSYSCB Clear control block
MVC TSYSID(4),CBACRO Move in eye-catcher
LA 7,1 Version 1
STH 7,TSYSVER Put version number in control +

block
LA 7,CBLEN Get control block length
STH 7,TSYSLEN Put length in control block
ST 1,CBADDR Save control block address
DROP 1

*
IEFSSI REQUEST=PUT,SUBNAME=SSCTSNAM,SUBDATA1=CBADDR, +

RETCODE=RC,RSNCODE=REASON, +
MF=(E,SSIPARMS)

*
B TESTPUT(15) Check return code

*
TESTPUT EQU *

B OPTIONS 0 - Processing successful
B SSIERR 4 - Warning
B SSIERR 8 - Invalid parameters
B SSIERR 12 - Request failure
B SSIERR 16 - Not defined
B SSIERR 20 - System error
B SSIERR 24 - SSI service not available

*
**
* Inform the SSI that TSYS will respond to the SETSSI command. *
**
OPTIONS EQU * Entry for successful PUT
*

IEFSSI REQUEST=OPTIONS,SUBNAME=SSCTSNAM,COMMAND=YES, +
RETCODE=RC,RSNCODE=REASON, +
MF=(E,SSIPARMS)

*
B TESTOPT(15) Check return code

*
TESTOPT EQU *

B ACTIVATE 0 - Processing successful
B SSIERR 4 - Warning
B SSIERR 8 - Invalid parameters
B SSIERR 12 - Request failure
B SSIERR 16 - Not defined
B SSIERR 20 - System error
B SSIERR 24 - SSI service not available

*
ACTIVATE EQU * Entry for successful OPTIONS

Appendix A — Examples

Appendix A. Examples — Subsystem Interface Routines 247

**
* Activate the subsystem. *
**

IEFSSI REQUEST=ACTIVATE,SUBNAME=SSCTSNAM,INTOKEN=TOKEN1, +
RETCODE=RC,RSNCODE=REASON, +
MF=(E,SSIPARMS)

*
B TESTACT(15)

*
TESTACT EQU *

B ACTIVEOK 0 - Processing successful
B SSIERR 4 - Warning
B SSIERR 8 - Invalid parameters
B SSIERR 12 - Request failed
B SSIERR 16 - Not defined
B SSIERR 20 - System error
B SSIERR 24 - SSI service not available

*
ACTIVEOK EQU *

WTO ’TSYS - SUBSYSTEM INITIALIZED’
B DONE

*
VTERR EQU * Entry for IEFSSVT error

MVC FAILSRV(L’SSVTSRV),SSVTSRV Get name of failing service
B ERRMSG Issue error message

*
SSIERR EQU * Entry for IEFSSI error

MVC FAILSRV(L’SSISRV),SSISRV Get name of failing service
*
**
* Convert the return and reason code and issue an error message. *
**
ERRMSG EQU *

MVC SERVERRD(SERVMSGL),SERVERRS Copy static message
*

L 7,RC Get return code
CVD 7,DOUBLE Convert to decimal
UNPK RCODE1,DOUBLE Make return code printable
MVZ RCODE1+3,RCODE1
MVC SERVERRD+43(2),RCODE1+2 Put return code in message

*
L 7,REASON Get reason code
CVD 7,DOUBLE Convert to decimal
UNPK RCODE1,DOUBLE Make reason code printable
MVZ RCODE1+3,RCODE1
MVC SERVERRD+55(4),RCODE1 Put reason code in message

*
MVC SERVERRD+18(L’FAILSRV),FAILSRV Put name of failing ++

service in message
WTO MF=(E,SERVERRD),CONSNAME=JSICNAME Issue message
B DONE

*
INITERR EQU *

MVC INITERRD(INITMSGL),INITERRS Copy static message
WTO MF=(E,INITERRD),CONSNAME=JSICNAME Issue message
B DONE

*
ESTAERR EQU *

MVC ESTAERRD(ESTAMSGL),ESTAERRS Copy static message
WTO MF=(E,ESTAERRD),CONSNAME=JSICNAME Issue message
B RETURN

*
**
* Cancel the ESTAE and return to caller. *
**
DONE EQU *

ESTAE 0

Appendix A — Examples

248 z/OS V1R4.0 MVS Using the Subsystem Interface

RETURN EQU *
L 8,4(13) Pointer to caller’s savearea
FREEMAIN R,LV=WORKALEN,A=(13)
LR 13,8
RETURN (14,12),RC=0

*
**
* ESTAE routine. *
**
TSYSERR EQU *

DROP 12 Drop current addressability
USING TSYSERR,15 Set addressability to TSYSERR
LR 12,15 Copy address of TSYSERR
S 12,=A(TSYSERR-TSYSINIT) Reestablish code register
DROP 15 Drop addressability to TSYSERR
USING TSYSINIT,12 Reset addressability
CL 0,=F’12’ If no SDWA provided
BE TSYSERRA Branch to percolate
USING SDWA,1
L 4,SDWAPARM
L 4,0(4)
DROP 1
SETRP WKAREA=(1),RC=4,RETADDR=(4),FRESDWA=YES,RETREGS=YES

TSYSERRA EQU *
XR 15,15 Indicate percolation
BR 14

*
**
* Define static function routine input table. *
**

IEFSSVTI TYPE=INITIAL,SSVTDATA=ROUTINE1,TABLEN=STABLEN
IEFSSVTI TYPE=ENTRY,NUMFCODES=1,FCODES=254,FUNCNAME=WRITEIT
IEFSSVTI TYPE=ENTRY,NUMFCODES=1,FCODES=255,FUNCNAME=DELETEIT
IEFSSVTI TYPE=ENTRY,NUMFCODES=1,FCODES=9,FUNCNAME=LISTEN
IEFSSVTI TYPE=FINAL

*

**
* Function routine data. *
**
WRITEIT DC CL8’WRITEIT ’
LISTEN DC CL8’LISTEN ’
DELETEIT DC CL8’DELETEIT’
ENTRIES DC H’4’
SSVTSRV DC CL7’IEFSSVT’
SSISRV DC CL7’IEFSSI ’
CBACRO DC CL4’TSCB’
*
ARETRY DC A(INITERR)
*
SERVERRS WTO ’TSYS ERROR IN xxxxxxx SERVICE, RETCODE xx, RSNCODE xxxx’,+

CONSNAME=,MF=L
SERVMSGL EQU *-SERVERRS
*
INITERRS WTO ’TSYS - SUBSYSTEM INITIALIZATION FAILED’, +

CONSNAME=,MF=L
INITMSGL EQU *-INITERRS
*
ESTAERRS WTO ’TSYS - SUBSYSTEM ESTAE FAILED’, +

CONSNAME=,MF=L
ESTAMSGL EQU *-ESTAERRS
*
*

LTORG
*
WORKAREA DSECT
SAVEAREA DS 18F

DS 0D

Appendix A — Examples

Appendix A. Examples — Subsystem Interface Routines 249

DOUBLE DS CL8 CVD work area
RCODE1 DS F Return/reason code in message
RC DS F Return code
REASON DS F Reason code
CBADDR DS F Control block address
FAILSRV DS CL7 Name of failing service

DS 0F
TOKEN1 DS F Vector table token

*
IEFSSVT MF=(L,VTPARMS)

*
IEFSSI MF=(L,SSIPARMS)

*
SERVERRD WTO ’TSYS ERROR IN xxxxxxx SERVICE, RETCODE xx, RSNCODE xxxx’,+

CONSNAME=,MF=L
INITERRD WTO ’TSYS - SUBSYSTEM INITIALIZATION FAILED’, +

CONSNAME=,MF=L
ESTAERRD WTO ’TSYS - SUBSYSTEM ESTAE FAILED’, +

CONSNAME=,MF=L
*
ESTAED ESTAE PARAM=ARETRY,MF=L
*
WORKALEN EQU *-WORKAREA
*
TSYSCB DSECT 0D
TSYSID DS CL4 Acronym
TSYSVER DS H Version
TSYSLEN DS H Length
*
CBLEN EQU *-TSYSCB
*

CVT DSECT=YES CVT
*

IEFJESCT JESCT
*

IEFJSCVT SSCVT
*

IEFJSRC SSI return and reason codes
*

IEFJSIPL Initialization routine +
parameter list

*
IHASDWA

*
IEFSSVTI TYPE=LIST

*
END

Exampl e 2 — Subsystem Function Routine (WRITEIT)

WRITEIT CSECT
WRITEIT AMODE ANY
WRITEIT RMODE ANY
**
* *
* Function: *
* *
* This function routine of the TSYS subsystem issues a WTO *
* to indicate that it has been entered. The message identifier *
* of the WTO is returned to the caller in a function dependent *
* area. *
* *
**
* *

Appendix A — Examples

250 z/OS V1R4.0 MVS Using the Subsystem Interface

* Name of the module: WRITEIT *
* *
* System macros used: *
* FREEMAIN *
* GETMAIN *
* IEFJSCVT *
* IEFJSSIB *
* IEFSSOBH *
* WTO *
* *
* Base register: 12 *
* *
* Other register use: *
* 10 SSCVT *
* 11 SSOB *
* 9 SSIB *
* *
* Attributes: *
* This routine must be reentrant and reside in a library *
* accessible at the time subsystem initialization occurs. *
* *
**
*
**
* Chain saveareas *
**

USING WRITEIT,12
SAVE (14,12) Save caller registers
LR 12,15 Establish module base register

*
LR 10,0 Establish addressability
USING SSCT,10 to the SSCVT
LR 11,1 Establish addressability
USING SSOB,11 to the SSOB

*
GETMAIN R,LV=72 Get working storage
ST 13,4(1) Chain saveareas forward
ST 1,8(13) Chain saveareas backward
LR 13,1 Point to this module’s savearea

*

**
* Validate the request and issue a WTO for message TSYS001 *
**

L 9,SSOBSSIB Establish addressability
USING SSIB,9 to the SSIB
CLC SSIBSSNM,SSCTSNAM Verify the subsystem name
BNE ERROR This should never happen
WTO ’TSYS001 - WRITEIT FUNCTION EXECUTED’,ROUTCDE=(2)
L 8,SSOBINDV Pointer to function dependent

* area
ST 1,2(8) Save message identification

* returned by WTO
MVC SSOBRETN,=F’0’ Indicate function success
B RETURN

*
ERROR EQU *

MVC SSOBRETN,=F’4’ Indicate function failure
*
**
* Return to the SSI *
**
RETURN EQU *

L 8,4(13) Pointer to caller’s savearea
FREEMAIN R,LV=72,A=(13)
LR 13,8
LM 14,12,12(13) Restore caller’ registers
LA 15,0 RC=0

Appendix A — Examples

Appendix A. Examples — Subsystem Interface Routines 251

BSM 0,14 Return to the SSI
*

IEFJSCVT
*

IEFSSOBH
*

IEFJSSIB
*

END

Exampl e 3 — Subsystem Function Routine (DELETEIT)

DELETEIT CSECT
DELETEIT AMODE ANY
DELETEIT RMODE ANY
**
* *
* Function: *
* *
* This function routine of the TSYS subsystem deletes a WTO. *
* The message identifier of the WTO is passed in a function *
* dependent area. *
* *
**
* *
* Name of the module: DELETEIT *
* *
* System macros used: *
* DOM *
* FREEMAIN *
* GETMAIN *
* IEFJSCVT *
* IEFJSSIB *
* IEFSSOBH *
* *
* Base register: 12 *
* *
* Other register use: *
* 10 SSCVT *
* 11 SSOB *
* 9 SSIB *
* *
* Attributes: *
* This routine must be reentrant and reside in a library *
* accessible at the time subsystem initialization occurs. *
* *
**
*
**
* Chain saveareas *
**

USING DELETEIT,12
SAVE (14,12) Save caller registers
LR 12,15 Establish module base register

*
LR 10,0 Establish addressability
USING SSCT,10 to the SSCVT
LR 11,1 Establish addressability
USING SSOB,11 to the SSOB

*
GETMAIN R,LV=72 Get working storage
ST 13,4(1) Chain saveareas foreword
ST 1,8(13) Chain saveareas backward
LR 13,1 Point to this module’s savearea

*

Appendix A — Examples

252 z/OS V1R4.0 MVS Using the Subsystem Interface

**
* Validate the request and delete the critical eventual action message *
**

L 9,SSOBSSIB Establish addressability
USING SSIB,9 to the SSIB
CLC SSIBSSNM,SSCTSNAM Verify the subsystem name
BNE ERROR This should never happen
L 8,SSOBINDV Pointer to function dependent

* area
L 1,2(8) Get message identification

* returned by WTO
DOM MSG=(1)
MVC SSOBRETN,=F’0’ Indicate function success
B RETURN

*
ERROR EQU *

MVC SSOBRETN,=F’4’ Indicate function failure
*
**
* Return to the SSI *
**
RETURN EQU *

L 8,4(13) Pointer to caller’s savearea
FREEMAIN R,LV=72,A=(13)
LR 13,8
LM 14,12,12(13) Restore caller’ registers
LA 15,0 RC=0
BSM 0,14 Return to the SSI

*
IEFJSCVT

*
IEFSSOBH

*
IEFJSSIB

*
END

Exampl e 4 — Subsystem Function Routine (LISTEN)

LISTEN CSECT
LISTEN AMODE ANY
LISTEN RMODE ANY
**
* *
* Function: *
* *
* This function routine of the TSYS subsystem is invoked by the *
* SSI broadcast of WTO. When it detects the WTO message issued *
* by the WRITEIT routine, it alters the attributes of the WTO to *
* be a non-rollable message. *
* *
**
* *
* Name of the module: LISTEN *
* *
* System macros used: *
* FREEMAIN *
* GETMAIN *
* IEFJSSOB *
* IHAWQE *
* *
* Base register: 12 *
* *
* Other register use: *
* 10 SSOB *

Appendix A — Examples

Appendix A. Examples — Subsystem Interface Routines 253

* 11 SSOBEXT *
* 9 WQE *
* *
* Attributes: *
* This routine must be reentrant and reside in a library *
* accessible at the time subsystem initialization occurs. *
* *
**
*
**
* Chain saveareas *
**

USING LISTEN,12
SAVE (14,12) Save caller registers
LR 12,15 Establish module base register

*
LR 10,1 Establish addressability
USING SSOB,10 to the SSOB

*
GETMAIN R,LV=72 Get working storage
ST 13,4(1) Chain saveareas foreword
ST 1,8(13) Chain saveareas backward
LR 13,1 Point to this module’s savearea

*

**
* Alter message number TSYS001 to be a critical eventual action *
* message (descriptor code of 11) *
**

L 11,SSOBINDV Chain through
USING SSOBEXT,11 the SSWT to
L 9,SSWTWQE establish addressability
USING WQE,9 to the WQE
CLC WQETXT+2(8),=C’TSYS001 ’ Check for desired message
BNE MSGDONE
TM WQEDC2,WQEDCK Check for DESC(11) already set
BO MSGDONE
OI WQEDC2,WQEDCK Alter message to be DESC(11)
OI WQEML1,WQEMLCE and eventual critical
OI WQEMCSF1,WQEMCSA Indicate descriptor codes

* present
MVC SSOBRETN,=F’4’ Indicate function recognized

* request, and processed it
B RETURN

*
MSGDONE EQU *

MVC SSOBRETN,=F’0’ Indicate function recognized
* request, but did not care
*
**
* Return to the SSI *
**
RETURN EQU *

L 8,4(13) Pointer to caller’s savearea
FREEMAIN R,LV=72,A=(13)
LR 13,8
LM 14,12,12(13) Restore the caller’s registers
LA 15,0 RC=0
BSM 0,14 Return

*
*

IEFJSSOB (WT),CONTIG=NO
*

IHAWQE
*

END

Appendix A — Examples

254 z/OS V1R4.0 MVS Using the Subsystem Interface

Exampl e 5 — Subsystem Requesting Routine (TSYSCALL)

TSYSCALL CSECT
TSYSCALL AMODE ANY
TSYSCALL RMODE ANY
**
* *
* Function: *
* *
* This routine runs as a problem program and invokes the TSYS *
* subsystem. It requests the SSI to invoke the WRITEIT function *
* to issue its WTO. Ten seconds later it requests the SSI to *
* invoke the DELETEIT function to delete the WTO. *
* *
* For the WTO to be broadcast to all subsystems, this routine *
* must be run SUB=MSTR. *
* *
**
* *
* Name of the module: TSYSCALL *
* *
* System macros used: *
* ABEND *
* CVT *
* IEFJESCT *
* IEFJSSIB *
* IEFSSOBH *
* IEFSSREQ *
* RETURN *
* STIMER *
* *
* Base register: 12 *
* *
* Other register use: *
* 10 SSOB *
* 11 SSIB *
* *
* Attributes: *
* None *
* *
**

*
**
* Chain saveareas *
**

USING TSYSCALL,12
SAVE (14,12) Save caller registers
LR 12,15 Establish module base register
LR 1,13
LA 13,SAVEAREA Point to this module’s savearea
ST 13,8(1) Chain saveareas foreword
ST 1,SAVEAREA+4 Chain saveareas backward

*
LA 10,SSOBD Establish addressability
USING SSOB,10 to the SSOB
LA 11,SSIBD Establish addressability
USING SSIB,11 to the SSIB

*
**
* Format the SSOB *
**

MVC SSOBID,=C’SSOB’ Set control block identifier
LA 8,SSOBHSIZ
STH 8,SSOBLEN Set control block size
ST 11,SSOBSSIB Set pointer to SSIB

Appendix A — Examples

Appendix A. Examples — Subsystem Interface Routines 255

MVC SSOBINDV,=A(MSGIDEXT) Set pointer to function
* dependent area
*
**
* Format the SSIB *
**

MVC SSIBID,=C’SSIB’ Set control block identifier
LA 8,SSIBSIZE
STH 8,SSIBLEN Set control block size
MVC SSIBSSNM,=C’TSYS’ Set subsystem name

*
**
* Call the TSYS subsystem *
**

MVC SSOBFUNC,WRITEIT Request the TSYS001 WTO message
OI PARMLST,X’80’ Mark end of parameter list
LA 1,PARMLST Point to the parameter list
IEFSSREQ
LTR 15,15 Check return code from SSI
BNZ ERROR
CLC SSOBRETN,=F’0’ Check return code from subsystem
BNZ ERROR

*
STIMER WAIT,BINTVL=TENSEC

*
MVC SSOBFUNC,DELETEIT Request DOM of the TSYS001 WTO

* message
LA 1,PARMLST Point to the parameter list
IEFSSREQ
LTR 15,15 Check return code from SSI
BNZ ERROR
CLC SSOBRETN,=F’0’ Check return code from subsystem
BNZ ERROR
B RETURN

*
ERROR EQU *

ABEND 1001,,,USER Indicate function failure
*
**
* Restore registers and return *
**
RETURN EQU *

L 13,SAVEAREA+4 Pointer to caller’s savearea
RETURN (14,12),RC=0

*
*
TENSEC DC F’1000’ Ten seconds in 1/100ths
WRITEIT DC H’254’
DELETEIT DC H’255’
*
SAVEAREA DC 18F’0’
*
PARMLST DC A(SSOBD) IEFSSREQ parameter list
*
SSOBD DS 0F SSOB data

DC (SSOBHSIZ)X’00’
*
MSGIDEXT DS 0F Function dependent area
MSGIDLEN DC AL2(MSGIDSIZ)
MSGIDENT DC F’0’ Message identifier from TFUNC1
MSGIDSIZ EQU *-MSGIDEXT
*
SSIBD DS 0F SSIB data

DC (SSIBSIZE)X’00’
*

IEFSSOBH
*

Appendix A — Examples

256 z/OS V1R4.0 MVS Using the Subsystem Interface

IEFJSSIB
*

CVT DSECT=YES
*

IEFJESCT
*

END

Appendix A — Examples

Appendix A. Examples — Subsystem Interface Routines 257

Appendix A — Examples

258 z/OS V1R4.0 MVS Using the Subsystem Interface

Appendix B. Using IEFJSVEC with Your Subsystem

This appendix describes using the IEFJSVEC service to help build and use your
subsystems when performing the following tasks:
v Defining what your subsystem can do:

– Building your subsystem’s SSVT
v Changing what your subsystem can do:

– Enabling your subsystem for new functions
– Disabling previously supported functions

IBM recommends that you use the dynamic SSI services that are described in
Chapter 6, “Services for Building and Using Your Subsystem” on page 163 instead
of using IEFJSVEC. The dynamic SSI services provide new capabilities and are
easier to use.

Defining What Your Subsystem Can Do
To define what your subsystem can do, you can use IEFJSVEC to build an SSVT
for your subsystem.

Building the SSVT
The IEFJSVEC service allows you to build an SSVT for your subsystem.

When preparing to build your subsystem’s SSVT, consider:

v When you want to invoke IEFJSVEC. You can invoke IEFJSVEC either through a
subsystem initialization routine specified in parmlib member IEFSSNxx or through
a subsystem routine invoked during START command processing, as described
under “Providing a Routine to Initialize Your Subsystem” on page 158.

v Which common storage subpool your subsystem’s SSVT is to be built in. Note
that the system uses the mode and key of the caller to access the SSVT and
invoke the function routines. Therefore, the storage subpool specified for the
SSVT must be a common subpool. See z/OS MVS Programming: Authorized
Assembler Services Guide for more information on selecting a common storage
subpool.

v What are the maximum number of function routines you expect the subsystem to
need. The maximum number of function routines you specify applies to the
function routines you define on this build request, and also to any function
routines that you define on the enable function or disable function of the
IEFJSVEC service.

v What are the actual number of function routines you want to specify on the
current request.

v What is the name of each function routine and the function code it supports.

v Where the subsystem function routines are to reside. See “Placement of Function
Routines” on page 155 for more information.

Environment
The following mapping macros are supplied by IBM and may be included in your
program when invoking IEFJSVEC:
v IEFVTSPL
v IEFJSBVT

© Copyright IBM Corp. 1988, 2002 259

The requirements for the caller of IEFJSVEC are:

Minimum Authorization Supervisor state with any PSW key
Dispatchable unit mode Task
AMODE 24-bit
Cross memory mode PASN=HASN=SASN
ASC mode Primary
Interrupt status Enabled for I/O and external interrupts
Locks No locks held
Control Parameters The VTSPL and JSBVT control blocks must reside in storage

below 16 megabytes.
Recovery The caller of IEFJSVEC should provide an ESTAE-type of

recovery environment. See z/OS MVS Programming:
Authorized Assembler Services Guide for more information
on an ESTAE-type of recovery environment.

Input Register Information
Before invoking the IEFJSVEC service, you must ensure that the following general
purpose registers contain:

Register Contents

1 Address of fullword that contains the address of the subsystem
VTSPL

13 Address of a standard 18-word save area

14 Return address

Input Parameters
Input parameters for the IEFJSVEC service are:
v VTSPL
v JSBVT — both fixed and variable sections

VTSPL Contents: Your program sets the following fields in the VTSPL control block
on input:

Field Name Description

VTSID Identifier ’VTSP’

VTSLEN Length of the VTSPL (VTSSIZE) control block

VTSVER Version number of the VTSPL (VTSCVER) control block

VTSCONID The 1-byte console ID of the console that the subsystem
initialization routine issues messages to. If your program sets this
field to zero, the VTSCNSID field is used.

This field exists for versions of MVS previous to SP410. IBM
recommends that you specify a 4-byte console ID as defined by the
VTSCNSID field.

VTSFLAGS Flags
v VTSGLOAD — load-to-global indicator.

To eliminate the need to have subsystem function routines reside
in LPA, the subsystem can request that IEFJSVEC issue a
load-to-global for those function routines by setting the
VTSGLOAD indicator. If load-to-global is used for the subsystem
function routines, the function routines are loaded into pageable
CSA and the loaded routines are associated with the requesting

Appendi x B — Using IEFJSVEC

260 z/OS V1R4.0 MVS Using the Subsystem Interface

task. When the task ends, the module’s use count is reduced by
the number of outstanding LOADs. When the module’s use count
reaches zero, the module is deleted, leaving an invalid function
routine address in the SSVT. Therefore, the load-to-global option
should only be used by programs running under a task that
never ends. For example, if IEFJSVEC is invoked by the
subsystem initialization routine which is given control out of early
system initialization (that is, those subsystem initialization
routines specified in IEFSSNxx parmlib members) the requesting
task is the master scheduler, which never goes away.

If you set the load-to-global indicator, all function routines which
are specified on a single request to IEFJSVEC are loaded into
pageable CSA. If you want to have some function routines
loaded into CSA and others that are not, issue separate
invocations of IEFJSVEC, one with the VTSGLOAD indicator set
and the other with the VTSGLOAD indicator not set. Because
your subsystem can only have one SSVT, for subsequent calls to
IEFJSVEC, you need to use the enable function code request
option available through the IEFJSVEC service. See “Enabling
Your Subsystem for New Functions” on page 263 for more
information.

VTSREQ Request flags — defines the operation that this call performs
v VTSCREAT — SSVT build indicator

VTSNAME Subsystem name. The name of the subsystem for which the SSVT
is being built. The subsystem name can be up to four characters. It
must be left-justified and padded to the right with blank (X’40’)
characters.

VTSSVTD Address of SSVT table data (mapped by IEFJSBVT)

VTSCNSID 4-byte console ID that the SSI uses for any messages issued on
this invocation of IEFJSVEC. If this field is set to zero, the
messages go to the master console.

Provide a CART and a console ID if IEFJSVEC is invoked while
running under a command processor. For example, if a subsystem
is initialized through START command processing. See z/OS MVS
Programming: Authorized Assembler Services Guide for information
on how to obtain the CART and console ID from the command
input buffer (CIB) control block.

VTSCART Command and response token (CART). If a CART is provided, the
SSI uses it for any messages it issues for this invocation of
IEFJSVEC.

Set all other fields in the VTSPL control block to binary zeros.

JSBVT Contents — Fixed Header Section: Your program sets the following fields
in the JSBVT control block on input:

Field Name Description

JSBID Identifier ’JSBV’

JSBLEN Length of the JSBVT (fixed header section) control block

JSBVERS Version number of the JSBVT (JSBCVERS) control block

JSBFUN Number of function routines specified in this table of data

Appendi x B — Using IEFJSVEC

Appendix B. Using IEFJSVEC with Your Subsystem 261

JSBSPL Subpool number from which the SSVT is to be built. Note that the
system uses the mode and key of the caller to access the SSVT
and invoke the function routines.

JSBMAXFR Maximum number of function routines you expect the subsystem to
need

Set all other fields in the fixed header section of the JSBVT control block to binary
zeros.

JSBVT Contents — Variable Length Section: The JSBVT fixed header is followed
by a variable length function routine data area (one for each function routine). Your
program sets the following fields on input:

Field Name Description

JSBLGTH Length of this function routine’s data area and function code area
(also see JSBFCOD)

JSBNME Name of the function routine. The function routine name can be up
to eight characters. It must be left-justified and padded to the right
with blank (X’40’) characters.

JSBNUM Number of function codes the function routine supports

JSBVT Contents — Variable Length Section: The function routine data area is
follow by a variable length function code area (one for each function routine). Your
program sets the following fields on input:

Field Name Description

JSBFCOD Function code (repeat if more than one function code is supported
by the same function routine). The value specified for each function
code must be in the range 1-255.

Output Register Information
When control returns to caller of the IEFJSVEC service, the general purpose
registers contain:

Register Contents

0 — 14 Same as on entry to call

15 Return code

Return Code Information
IEFJSVEC returns one of the following return codes in register 15:

Return Code

(Decimal) Meaning

VTSSUCES (0) Successful completion. The request to build an
SSVT was successfully processed.

VTSINVID (4) An incorrect identifier was specified in VTSPL or
JSBVT. Check the input parameter areas to make
sure that you specified the proper identifiers, and
that the pointers to the input parameter areas are
properly defined.

VTSINVIN (8) An incorrect subsystem name was specified. Check
to make sure that you specified a valid subsystem

Appendi x B — Using IEFJSVEC

262 z/OS V1R4.0 MVS Using the Subsystem Interface

name in the VTSNAME field. Consult with your
system programmer to make sure that it matches
the name of a valid subsystem defined in the
IEFSSNxx parmlib member that is currently in use.

VTSGETFL (12) Unable to obtain storage for the SSVT. Consult with
your system programmer to verify that sufficient
storage is available for the subpool specified in the
JSBSPL field.

VTSLOGER (16) Logic error. Contact your IBM service support
center.

VTSLOADF (20) An abend occurred when trying to load the function
routine. The VTSFUNCT field contains the name of
the function routine being loaded when the problem
occurred.

VTSINVBI (24) An incorrect bit was set in the request flags. Verify
that you have set only the VTSCREAT indicator and
that you have not set any other bits in the VTSREQ
flag byte.

VTSINCR (28) Unable to process the SSVT build request. The
SSVT already exists. Verify that you have specified
the correct subsystem name for which an SSVT is
to be built. Also ensure that your subsystem
initialization code is not accidentally attempting to
build an SSVT twice for the same subsystem
(specified in VTSNAME).

Output Parameters
Output parameters for the IEFJSVEC service are:
v VTSPL

VTSPL Contents: The VTSPL control block contains the following information upon
return from your build SSVT request:

Field Name Description

VTSSVTAD Address of the SSVT, if the SSVT build request was successful
(Register 15=0)

VTSSSCVT Address of the SSCVT, if the SSVT build request was successful
(Register 15=0)

VTSFUNCT Name of the function routine processed, if an error occurred when
trying to load a function routine (Register 15=20)

Changing What Your Subsystem Can Do
To change what your subsystem can do, you can use IEFJSVEC to:
v Enable your subsystem for new functions
v Disable a previously supported function

Enabling Your Subsystem for New Functions
You can use the enable function of the IEFJSVEC service to:

v Dynamically add one or more function codes to an existing function routine. This
function routine might have been specified on the original build SSVT request or
might have been added by a previous enable request.

Appendi x B — Using IEFJSVEC

Appendix B. Using IEFJSVEC with Your Subsystem 263

When preparing to enable additional function codes, consider:

– When you will invoke IEFJSVEC.

If you are invoking IEFJSVEC while running under a command processor, for
example, from a subsystem routine invoked during START command
processing, provide a console ID and CART, as described in “Input
Parameters” on page 265.

– Which existing function routines will support which additional function codes.

v Dynamically add one or more new function routines, and, for each function
routine, one or more function codes that the function routine is to support.

When preparing to enable additional function routines and function codes,
consider the following:

– When you will be invoking IEFJSVEC.

If you are invoking IEFJSVEC while running under a command processor, for
example, from a subsystem routine invoked during START command
processing, then provide a console ID and CART, as described in “Input
Parameters” on page 265.

– What are the actual number of function routines your subsystem currently
supports and is it less the maximum number allowed.

To dynamically add more function routines to your subsystem, the actual
number of function routines your subsystem currently supports must be less
than the maximum number of function routines that was specified when your
subsystem’s SSVT was built. See the description for the JSBMAXFR field in
“Building the SSVT” on page 259.

– What is the name of each additional function routine and the function codes it
is to support.

– Where your subsystem function routines are to reside. See Chapter 5, “Setting
Up Your Subsystem” on page 153 for more information on where your function
routines can reside.

Environment
The following mapping macros are supplied by IBM and may be included in your
program when invoking IEFJSVEC:
v IEFVTSPL
v IEFJSBVT

The requirements for the caller of IEFJSVEC are:

Minimum Authorization Supervisor state with any PSW key
Dispatchable unit mode Task
AMODE 24-bit
Control Parameters The VTSPL and JSBVT control blocks must reside in storage

below 16 megabytes.
Cross memory mode PASN=HASN=SASN
ASC mode Primary
Interrupt status Enabled for I/O and external interrupts
Locks No locks held
Recovery The caller of IEFJSVEC should provide an ESTAE-type of

recovery environment. See z/OS MVS Programming:
Authorized Assembler Services Guide for more information
on an ESTAE-type of recovery environment.

Restrictions
The number of function routines supported by a subsystem must not exceed 255.

Appendi x B — Using IEFJSVEC

264 z/OS V1R4.0 MVS Using the Subsystem Interface

Input Register Information
Before you invoke IEFJSVEC, you must ensure that the following general purpose
registers contain:

Register Contents

1 Address of fullword that contains the address of the subsystem
VTSPL

13 Address of a standard 18-word save area

14 Return address

Input Parameters
Input parameter areas for the IEFJSVEC service are:
v VTSPL
v JSBVT — both fixed and variable sections

VTSPL Contents: Your program must set the following fields in the VTSPL control
block on input:

Field Name Description

VTSID Identifier ’VTSP’

VTSLEN Length of the VTSPL (VTSSIZE) control block

VTSVER Version number of the VTSPL (VTSCVER) control block

VTSCONID The 1-byte console ID of the console that the subsystem
initialization routine issues messages to. If your program sets this
field to zero, the VTSCNSID field is used.

This field exists for versions of MVS previous to SP410. IBM
recommends that you specify a 4-byte console ID as defined by the
VTSCNSID field.

VTSFLAGS Flags
v VTSGLOAD — load-to-global indicator.

This indicator applies only when you are adding new function
routines to your subsystem and does not apply when you are
adding new function codes to an existing function routine. If the
VTSGLOAD indicator is set, the SSI loads all of the function
routines into pageable CSA. Each loaded routine is associated
with the task under which the call to IEFJSVEC was made. The
VTSGLOAD indicator applies to all function routines specified on
a single invocation of IEFJSVEC.

Only use the VTSGLOAD indicator when invoking the enable
function under a system address space that does not end. If the
subsystem invokes the enable function from its own address
space or task, those routines are deleted from CSA when the
task ends, causing invalid function routine addresses in the
SSVT. IBM recommends that you use the VTSGLOAD indicator
only when invoking IEFJSVEC from an initialization routine
named in IEFSSNxx. Subsystems initialized through START
commands should ensure that the function routines are in
commonly addressable storage, that is, in the link pack area
(LPA, MLPA, FLPA).

If you want to have some function routines that are loaded into
CSA and others that are not, issue separate invocations of
IEFJSVEC, one with the VTSGLOAD indicator set and the other

Appendi x B — Using IEFJSVEC

Appendix B. Using IEFJSVEC with Your Subsystem 265

with the VTSGLOAD indicator not set. You may use the SSVT
build function for one of the requests, if an SSVT does not
already exist. However, for any subsequent calls you will need to
use the enable function.

See “Placement of Function Routines” on page 155 to determine
whether the load-to-global indicator should be used.

VTSREQ Request flags - defines the operation that this call performs
v VTSFCEN — Enable indicator

VTSNAME Subsystem name. The name of the subsystem for which additional
function codes or function routines are to be added. The subsystem
name can be up to four characters. It must be left-justified and
padded to the right with blank (X’40’) characters.

VTSSVTD Address of SSVT table data (see JSBVT content)

VTSCNSID 4-byte console ID that the SSI uses for any messages issued on
this invocation of IEFJSVEC. If this field is set to zero, the
messages go to the master console.

Provide a CART and a console ID if IEFJSVEC is invoked while
running under a command processor. For example, if a subsystem
is initialized through START command processing. See z/OS MVS
Programming: Authorized Assembler Services Guide for information
on how to obtain the CART and console ID from the command
input buffer (CIB) control block.

When IEFJSVEC is invoked during early system initialization, that
is, the subsystem is initialized through an initialization routine
specified in the IEFSSNxx parmlib member, set the VTSCNSID field
to zero.

VTSCART Command and response token (CART). If a CART is provided, the
SSI uses it for any messages it issues for this invocation of
IEFJSVEC.

Provide a CART and a console ID when IEFJSVEC is invoked while
running under a command processor, as when a subsystem is
initialized through START command processing. See z/OS MVS
Programming: Authorized Assembler Services Guide for information
on how to obtain the CART and console ID from the command
input buffer (CIB) control block.

Set the VTSCART field to zero when IEFJSVEC is invoked during
early system initialization, that is, when the subsystem is initialized
through an initialization routine specified in an IEFSSNxx parmlib
member.

All other fields in the VTSPL control block must be set to binary zeros.

JSBVT Contents — Fixed Header Section: Your program must set the following
fields in the JSBVT control block on input:

Field Name Description

JSBID Identifier ’JSBV’

JSBLEN Length of the JSBVT (fixed header section) control block

JSBVERS Version number of the JSBVT (JSBCVERS) control block

JSBFUN Number of function routines specified in this table of data

Appendi x B — Using IEFJSVEC

266 z/OS V1R4.0 MVS Using the Subsystem Interface

All other fields in the fixed header section of the JSBVT control block must be set to
binary zeros.

JSBVT Contents — Variable Length Section: The JSBVT fixed header is followed
by a variable length function routine data area (one for each function routine). Your
program must set the following fields on input:

Field Name Description

JSBLGTH Length of this function routine’s data area and its function code
area (see the JSBFCOD field)

JSBNME Name of a function routine. The function routine name specified
should be either the name of a new function routine to be
supported by the subsystem or the name of an existing function
routine to which additional function codes are to be added. The
function routine name can be up to eight characters. It must be
left-justified and padded to the right with blank (X’40’) characters.

JSBNUM Number of function codes specified for this function routine.

If this enable request is being used to add a new function routine to
a subsystem or is being used to add new function codes to an
existing function routine, the JSBNUM field should be set to the
number of new function codes to be supported by the function
routine as specified in the JSBFCOD field on this invocation of
IEFJSVEC.

JSBVT Contents — Variable Length Section: The function routine data area is
follow by a variable length function code area (one for each function routine). Your
program must set the following field on input:

Field Name Description

JSBFCOD Function code(s) (repeat if more than one function code is
supported by the same function routine). The value specified for
each function code, must be in the range 1-255.

Output Register Information
When control returns to caller of IEFJSVEC, the general purpose registers contain:

Register Contents

0 — 14 Same as on entry to call

15 Return code

Return Code Information
IEFJSVEC returns one of the following return codes in register 15:

Return Code

(Decimal) Meaning

VTSSUCES (0) Successful completion. The request to enable was
successfully processed and the SSVT has been
updated.

VTSINVID (4) An incorrect identifier was specified in VTSPL or
JSBVT. Check the input parameter areas to make
sure that you specified the proper identifiers, and
that the pointers to the input parameter areas are
properly defined.

Appendi x B — Using IEFJSVEC

Appendix B. Using IEFJSVEC with Your Subsystem 267

VTSINVIN (8) An incorrect subsystem name was specified. Check
to make sure that you specified a valid subsystem
name in the VTSNAME field. Consult with your
system programmer to make sure that it matches
the name of a valid subsystem defined in the
IEFSSNxx parmlib member that is currently in use.

VTSLOGER (16) Logic error. Contact your IBM service support
center.

VTSLOADF (20) An abend occurred when trying to load the function
routine. The VTSFUNCT field contains the name of
the function routine being loaded when the problem
occurred.

VTSINVBI (24) An incorrect bit was set in the request flags. Verify
that you have set only the VTSFCEN indicator and
that you have not set any other bits in the VTSREQ
flag byte.

VTSINVED (32) Unable to process enable request; no SSVT found.
Verify that you specified a valid subsystem name in
the VTSNAME field. If the subsystem name is valid,
make sure that the subsystem’s SSVT has been
built and is properly pointed to from your
subsystem’s SSCVT prior to any IEFJSVEC enable
calls being made.

VTSNOSPA (36) Unable to process enable request; insufficient
space in the SSVT for additional function routine
addresses. The VTSFUNC field contains the name
of the function routine being loaded when the
problem occurred. The maximum number of
function routines which can be supported by your
subsystem has been exceeded. Increase the
maximum allowed on your build SSVT by
increasing JSBMAXFR.

VTSSIVT (40) Target vector table is SSI-managed and can only be
updated through the IEFSSVT macro.

VTSNOSUB (44) Target Subsystem does not exist.

Output Parameters
Output parameters for the IEFJSVEC service are:
v VTSPL

VTSPL Contents: The VTSPL control block contains the following information upon
return from your enable request:

Field Name Description

VTSSSCVT Address of the SSCVT, if the enable request was successful
(Register 15=0)

VTSFUNCT Name of the function routine being processed, if an error occurred
when trying to load a function routine (Register 15=20 or Register
15=36)

Appendi x B — Using IEFJSVEC

268 z/OS V1R4.0 MVS Using the Subsystem Interface

Disabling Previously Supported Functions
You can use the disable function of the IEFJSVEC service to dynamically disable a
function code so that your subsystem no longer gets control for that function.
Disabling a function is in effect a ″logical delete.″

Attention: Because there is no serialization on updating the table in the SSVT,
other requests for the supported functions might be coming in asynchronously.
Therefore, it is important to not remove the function routines from storage.

When preparing to disable one or more function codes, consider:

v When you will be invoking IEFJSVEC

If you are invoking IEFJSVEC while running under a command processor, for
example, from a subsystem routine invoked during START command processing,
then a console ID and CART should be provided, as described in “Input
Parameters”.

v Which of the existing function codes are no longer supported.

Environment
The following mapping macros are supplied by IBM and may be included in your
program when invoking IEFJSVEC:
v IEFVTSPL
v IEFJSBVT

The requirements for the caller of IEFJSVEC are:

Minimum Authorization Supervisor state with any PSW key
Dispatchable unit mode Task
AMODE 24-bit
Control Parameters The VTSPL and JSBVT control blocks must reside in storage

below 16 megabytes.
Cross memory mode PASN=HASN=SASN
ASC mode Primary
Interrupt status Enabled for I/O and external interrupts
Locks No locks held
Recovery The caller of IEFJSVEC should provide an ESTAE-type of

recovery environment. See z/OS MVS Programming:
Authorized Assembler Services Guide for more information
on an ESTAE-type of recovery environment.

Input Register Information
Before you invoke IEFJSVEC, you must ensure that the following general purpose
registers contain:

Register Contents

1 Address of fullword that contains the address of the subsystem
VTSPL

13 Address of a standard 18-word save area

14 Return address

Input Parameters
Input parameter areas for the IEFJSVEC service are:
v VTSPL
v JSBVT — both fixed and variable sections

Appendi x B — Using IEFJSVEC

Appendix B. Using IEFJSVEC with Your Subsystem 269

VTSPL Contents: Your program must set the following fields in the VTSPL control
block on input:

Field Name Description

VTSID Identifier ’VTSP’

VTSLEN Length of the VTSPL (VTSSIZE) control block

VTSVER Version number of the VTSPL (VTSCVER) control block

VTSCONID The 1-byte console ID of the console that the subsystem
initialization routine issues messages to. If your program sets this
field to zero, the VTSCNSID field is used.

This field exists for versions of MVS previous to SP410. IBM
recommends that you specify a 4-byte console ID as defined by the
VTSCNSID field.

VTSREQ Request flags - defines the operation that this call performs
v VTSFCDIS — Disable indicator

VTSNAME Subsystem name. The name of the subsystem for which one or
more function codes are to be disabled. The subsystem name can
be up to four characters. It must be left-justified and padded to the
right with blank (X’40’) characters.

VTSSVTD Address of SSVT table data (see JSBVT contents)

VTSCNSID 4-byte console ID that the SSI uses for any messages issued on
this invocation of IEFJSVEC. If this field is set to zero, the
messages go to the master console.

Provide a CART and a console ID if IEFJSVEC is invoked while
running under a command processor. For example, if a subsystem
is initialized through START command processing. See z/OS MVS
Programming: Authorized Assembler Services Guide for information
on how to obtain the CART and console ID from the command
input buffer (CIB) control block.

When IEFJSVEC is invoked during early system initialization, that
is, the subsystem is initialized through an initialization routine
specified in the IEFSSNxx parmlib member, set the VTSCNSID field
to zero.

VTSCART Command and response token (CART). If a CART is provided, the
SSI uses it for any messages it issues for this invocation of
IEFJSVEC.

Provide a CART and a console ID when IEFJSVEC is invoked while
running under a command processor, as when a subsystem is
initialized through START command processing. See z/OS MVS
Programming: Authorized Assembler Services Guide for information
on how to obtain the CART and console ID from the command
input buffer (CIB) control block.

Set the VTSCART field to zero when IEFJSVEC is invoked during
early system initialization, that is, when the subsystem is initialized
through an initialization routine specified in an IEFSSNxx parmlib
member.

All other fields in the VTSPL control block must be set to binary zeros.

Appendi x B — Using IEFJSVEC

270 z/OS V1R4.0 MVS Using the Subsystem Interface

JSBVT Contents — Fixed Header Section: Your program must set the following
fields in the JSBVT control block on input:

Field Name Description

JSBID Identifier ’JSBV’

JSBLEN Length of fixed header section

JSBVERS Version number (JSBCVERS)

JSBFUN Number of function routines specified in this table of data

All other fields in the fixed header section of the JSBVT control block must be set to
binary zeros.

JSBVT Contents — Variable Length Section: The JSBVT fixed header is followed
by a variable length function routine data area (one for each function routine). Your
program must set the following fields on input:

Field Name Description

JSBLGTH Length of this function routine’s data area and it’s function code
area (see the JSBFCOD field)

JSBNME Name of a function routine. The function routine name can be up to
eight characters. It must be left-justified and padded to the right
with blank (X’40’) characters.

JSBNUM Number of function codes

The JSBNUM field should be set to the number of function codes
which are to be disabled for this function routine as specified in the
JSBFCOD field on this invocation of IEFJSVEC.

JSBVT Contents — Variable Length Section: The function routine data area is
followed by a variable length function code area (one for each function routine).
Your program must set the following field on input:

Field Name Description

JSBFCOD Function code (repeat if more than one function code is to be
disabled). The value specified for each function code, must be in
the range 1-255.

Output Register Information
When control returns to caller of IEFJSVEC, the general purpose registers contain:

Register Contents

0 — 14 Same as on entry to call

15 Return code

Return Code Information
IEFJSVEC returns one of the following return codes in register 15:

Return Code

(Decimal) Meaning

VTSSUCES (0) Successful completion. The request to disable was
successfully processed and the SSVT has been
updated.

Appendi x B — Using IEFJSVEC

Appendix B. Using IEFJSVEC with Your Subsystem 271

VTSINVID (4) An incorrect identifier was specified in VTSPL or
JSBVT. Check the input parameter areas to make
sure that you specified the proper identifiers, and
that the pointers to the input parameter areas are
properly defined.

VTSINVIN (8) An incorrect subsystem name was specified. Check
to make sure that you specified a valid subsystem
name in the VTSNAME field. Consult with your
system programmer to make sure that it matches
the name of a valid subsystem defined in the
IEFSSNxx parmlib member that is currently in use.

VTSLOGER (16) Logic error. Contact your IBM service support
center.

VTSINVBI (24) An incorrect bit was set in the request flags. Verify
that you have set only the VTSFCDIS indicator and
that you have not set any other bits in the VTSREQ
flag byte.

VTSINVED (32) Unable to process disable request; no SSVT found.
Verify that you specified a valid subsystem name in
the VTSNAME field. If the subsystem name is valid,
make sure that the subsystem’s SSVT has been
built and is properly pointed to from your
subsystem’s SSCVT prior to any IEFJSVEC disable
calls being made.

Output Parameters
Output parameters for the IEFJSVEC service are:
v VTSPL

VTSPL Contents: The VTSPL control block contains the following information upon
return from your disable request:

Field Name Description

VTSSSCVT Address of the SSCVT, if the disable request was successful
(Register 15=0)

Appendi x B — Using IEFJSVEC

272 z/OS V1R4.0 MVS Using the Subsystem Interface

Appendix C. Accessibility

Accessibility features help a user who has a physical disability, such as restricted
mobility or limited vision, to use software products successfully. The major
accessibility features in z/OS enable users to:

v Use assistive technologies such as screen-readers and screen magnifier
software

v Operate specific or equivalent features using only the keyboard

v Customize display attributes such as color, contrast, and font size

Using assistive technologies
Assistive technology products, such as screen-readers, function with the user
interfaces found in z/OS. Consult the assistive technology documentation for
specific information when using it to access z/OS interfaces.

Keyboard navigation of the user interface
Users can access z/OS user interfaces using TSO/E or ISPF. Refer to z/OS TSO/E
Primer, z/OS TSO/E User’s Guide, and z/OS ISPF User’s Guide Volume I for
information about accessing TSO/E and ISPF interfaces. These guides describe
how to use TSO/E and ISPF, including the use of keyboard shortcuts or function
keys (PF keys). Each guide includes the default settings for the PF keys and
explains how to modify their functions.

© Copyright IBM Corp. 1988, 2002 273

274 z/OS V1R4.0 MVS Using the Subsystem Interface

Notices

This information was developed for products and services offered in the USA.

IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may be
used instead. However, it is the user’s responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you any
license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
USA

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply to
you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements and/or
changes in the product(s) and/or the program(s) described in this publication at any
time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those
Web sites. The materials at those Web sites are not part of the materials for this
IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes
appropriate without incurring any obligation to you.

© Copyright IBM Corp. 1988, 2002 275

Licensees of this program who wish to have information about it for the purpose of
enabling: (i) the exchange of information between independently created programs
and other programs (including this one) and (ii) the mutual use of the information
which has been exchanged, should contact:

IBM Corporation
Mail Station P300
2455 South Road
Poughkeepsie, NY 12601-5400
USA

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement, or any equivalent agreement
between us.

If you are viewing this information softcopy, the photographs and color illustrations
may not appear.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrates programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to IBM,
for the purposes of developing, using, marketing or distributing application programs
conforming to the application programming interface for the operating platform for
which the sample programs are written. These examples have not been thoroughly
tested under all conditions. IBM, therefore, cannot guarantee or imply reliability,
serviceability, or function of these programs. You may copy, modify, and distribute
these sample programs in any form without payment to IBM for the purposes of
developing, using, marketing, or distributing application programs conforming to
IBM’s application programming interfaces.

Programming Interface Information
This book primarily documents intended Programming Interfaces that allow the
customer to write programs to obtain the services of z/OS.

This publication also documents information that is NOT intended to be used as
Program Interfaces of z/OS. This information is identified where it occurs, either by
an introductory statement to a chapter or section or by the following marking:

NOT Programming Interface Information

End of NOT Programming Interface Information

Notices

276 z/OS V1R4.0 MVS Using the Subsystem Interface

Trademarks
The following terms are trademarks of the IBM Corporation in the United States or
other countries or both:
v AT
v CT
v Current
v DFSMS/MVS
v IBM
v IBMLink
v IMS
v IMS/ESA
v Language Environment
v MVS
v MVS/ESA
v MVS/SP
v NetView
v OS/390
v Resource Link
v RACF
v SP
v S/390
v System/390
v SP
v z/OS
v z/OS.e

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Other company, product, and service names may be trademarks or service marks
of others.

Notices

Notices 277

278 z/OS V1R4.0 MVS Using the Subsystem Interface

Index

A
accessibility 273
additional recommendations for specifying keywords

related to function code 54 65
address space

subsystem 155
application thread

caller of the SSI function code 79 97
ASCRE macro

using to create a separate address space 156
associate a new function routine with a supported

function code
use of 169
with the IEFSSVT macro 169

automatic restart manager
considerations 50

B
batch jobs

initiating a job 8
broadcast request

description 2
build the SSVT

considerations 166, 259
with the IEFJSVEC service 259
with the REQUEST=CREATE parameter 166

BULK MODIFY SAPI Call
SSI Function Code 79 85

C
command processing call - SSI function code 10

considerations 206
considerations for system symbols 207
description 201
restrictions 206
sysplex considerations 207

command processing call - SSI function code 14
considerations 210
description 208
restrictions 210

command sensitive area
contents 205
for a REPLY command 205

considerations
automatic restart manager 50

COUNT SAPI Call
SSI Function Code 79 85

create an SSIB
steps 9

D
DALBRTKN text unit

use of 86

DALDSNAM text unit
use of 29
use of for SSI Function Code 79 91

DALRTDDN text unit
use of 29

DALSSREQ text unit
use of 29
use of for SSI Function Code 79 91

define your subsystem
description 156

directed request
description 2

disability 273
disable previously supported functions

use of 168, 269
with the IEFJSVEC service 269
with the IEFSSVT macro 168

documents, licensed xii
DUNDDNAM text unit

use of 29, 86
DUNOVCLS text unit

use of 30
DUNOVDSP text unit

use of 30
DUNOVSNH text unit

use of 30
DUNOVSUS text unit

use of 30
dynamic SSI 4

description 4

E
early notification of end-of-task call - SSI function code

50
description 211

enable your subsystem for new functions
use of 168, 263
with the IEFJSVEC service 263
with the IEFSSVT macro 168

end-of-address space (end-of-memory) call - SSI
function code 8

description 184
end-of-task call - SSI function code 4

description 180
environment on entry to a function routine

description 153
register contents 154

example
for extended status function call - SSI function code

80 141
for request subsystem version information call - SSI

function code 54 65
for the process SYSOUT data sets call - SSI function

code 1 33
passing accounting parameters 161

extended status function call - SSI function code 80
example 141

© Copyright IBM Corp. 1988, 2002 279

Extended Status function call - SSI function code 80
description 118

external writer 14
caller of the SSI function code 1 14
considerations 30

F
first line of a multi-line WTO

WQE (major WQE) contents 195
fixed header input section

contents 58
description 55

fixed header output section
contents 60
description 60

format of the variable output sections 62
function code descriptions

for SSI function codes your program can request 13
function codes (SSI)

description 7
list of 13, 179
requirements 153

function routines
placement 155
requirements 153

I
IBM-defined keywords

related to function code 54 63
IEAVG700 module

calling the module 188
IEFJSIPL mapping macro 164
IEFJSSIB mapping macro 8
IEFJSVEC service

disabling functions 269
enabling functions 263
using to build the SSVT 259

IEFSSNxx parmlib member
planning 156

IEFSSOBH mapping macro 7
IEFSSREQ macro

description 9
introduction 7
syntax 10
use of 9
with subsystem affinity service 176

IEFSSVT macro
disabling functions 168
enabling functions 168
replacing the function routine 169
use to build SSVT 155
use to build the SSVT 166
use to disable subsystem function codes 155
use to enable functions 155

IEFSSVTI macro
use of 167

initial program load
See IPL

initialization routine 165

initialization routine (continued)
specifying 158
subsystem 164

initialize your subsystem
by specifying an initialization routine 158
by using the START command 158

input to the SSVT 167
installation variable output section

contents 62
description 62
restrictions 64

integrity
subsystem considerations 154

IPL (initial program load)
considerations 157

J
JES Job Information Services - SSI function code 71

description 71
JES2 subsystem 1
JES3 subsystem 1
JESSPOOL SAF resource class

use of for Function Code 79 87, 94

K
keyboard 273

L
licensed documents xii
life-of-job SSIB

description 8
use 17, 99

load-to-global option 155
LookAt message retrieval tool xi

M
maintain information about subsystem callers

subsystem affinity entry 175
using the subsystem affinity service 175

make a request of a subsystem
summary of steps 11
using the IEFSSREQ macro 9

MCSOPER/MCSOPMSG macro services
use of 189

message retrieval tool, LookAt xi
multi-line use information

for SSI function code 9 197
multi-line WTO

for SSI function code 9 194
SSWT contents 194
subsequent lines 197
WQE (minor WQE) contents 197

280 z/OS V1R4.0 MVS Using the Subsystem Interface

N
name your subsystem

restrictions 156
Notices 275
notify user message service call - SSI function code 75

description 78

P
placement of function routines 155

setting the load-to-global option 155
primary subsystem

description 1
procedure of searching data strings 62
process SYSOUT data sets call - SSI function code 1

description 14
example 33
retrieval attributes 14
update attributes 14

processing flow for single data set requests
for process SYSOUT data sets call - SSI function

code 1 28
processing all data sets together 30
processing one data set at time

steps 29
PUT/GET SAPI Call

SSI Function Code 79 85

R
recovery

subsystem considerations 154
register contents

on entry to a function routine 154
request a function of a subsystem

steps 7
request command processing information

description 201, 208
request job ID call - SSI function code 20

description 44
restrictions 49

request subsystem version information
installation-defined keywords 64

request subsystem version information call - SSI
function code 54

description 55, 215
example 65

request types
for SYSOUT Application Program Interface 84

restrictions for SSI function code 10 206
restrictions for SSI function code 14 210
return code information

for command processing call - SSI function code
10 205

for delete operator message - SSI function code
14 210

for early notification of end-of-task call - SSI function
code 50 214

for end-of-address space (end-of-memory) call - SSI
function code 8 187

return code information (continued)
for end-of-task call — SSI function code 4 183
for extend status function call - SSI function code

80 130
for JES Job Information Services - SSI Function

Code 71 75
for notify user message service call - SSI function

code 75 81
for process SYSOUT data sets call - SSI function

code 1 24
for request job ID call - SSI function code 20 48
for request subsystem version information call - SSI

function code 54 59, 217
for return job ID call - SSI function code 21 54
for SMF SUBPARM option change call - SSI function

code 58 223
for SYSOUT Application Program Interface - SSI

function code 79 108
for verify subsystem function call - SSI function code

15 43
for WTO/WTOR call - SSI function code 9 199

return codes from a directed request
list of 10

return job ID call - SSI function code 21
description 51

S
Scheduler Work Blocks (SWBs)

use of in Function Code 79 90
secondary subsystem

description 1
services for building and using your subsystem

activating your subsystem 169
adding your subsystem 163
changing what your subsystem can do 167
deactivating your subsystem 170
defining subsystem options 172
defining what your subsystem can do 166
description 163
initializing your subsystem 164
maintaining information about subsystem

callers 175
querying subsystem information 173
storing and retrieving subsystem-specific

information 172
swapping subsystem functions 171

services for writing your subsystem
changing what your subsystem can do 263
defining what your subsystem can do 259

SET SMF=xx command
use of 160

set up the environment
to make a request of a subsystem 7

SETSMF command
use of 160

setting up your subsystem
planning considerations 153

shortcut keys 273
single-line WTO

WQE contents 192

Index 281

SJFREQ macro
use of in Function Code 79 90

SMF console command
use of 160

SMF parmlib member (SMFPRMxx)
use of 160

SMF SUBPARM option
initializing the SMF parameters 160
initializing the subsystem 160
modifying the SUBPARM value 160
processing 160

SMF SUBPARM option change call - SSI function code
58

description 221
SMFCHSUB macro

use of 161
specifying keywords

related to function code 54 64
SSAFF macro

description 176
obtain a value from an entry 176
parameters 176

DATA parameter 177
ENTRY parameter 177
OBTAIN parameter 177
SET parameter 177
symbol 177
TCB parameter 177

set a value in an entry 176
syntax 176
use 176
use of 176

SSCVT (subsystem communication vector table) 154
address of the SSCVT 154

SSI (subsystem interface) 1
attributes 1
description 1
error handling 239
examples 245
introduction 1
troubleshooting errors 239

SSI Function Code 54
use of in SSI Function Code 79 86

SSI function code descriptions
for SSI function codes your program can request 13
for SSI function codes your subsystem can

support 179
SSI function codes

list of 13, 179
SSI function codes your program can request

list of 13
SSI function codes your subsystem can support

list of 179
SSI processing

controlling 3
SSIB (subsystem identification block)

description 8
SSIB data area 8
SSIBID field

setting the field to create an SSIB 9

SSIBJBID field
setting the field to create an SSIB 9

SSIBLEN field
setting the field to create an SSIB 9

SSIBSSNM field
setting the field to create an SSIB 9

SSIBSUSE field
setting the field to create an SSIB 9

SSOB (subsystem options block)
description 7

SSOB data area 7
SSOB function dependent area

description 8
SSRTDIST return code value

from a directed request 11
SSRTLERR return code value

from a directed request 11
SSRTNOSS return code value

from a directed request 11
SSRTNSUP return code value

from a directed request 11
SSRTNTUP return code value

from a directed request 11
SSRTOK return code value

from a directed request 10
SSS2BTOK field

use of 91
SSS2BULK request

use of 84
SSS2CDS field

use of 90, 92
SSS2COUN request

use of 84
SSS2CTRL field

use of 85, 91, 93
SSS2DDES field

use of 85
SSS2DELC field

use of 93
SSS2DES2 field

use of 85
SSS2DESR field

use of 85
SSS2DEST field

use of 85
SSS2DSN field

use of 86
SSS2ECBP field

use of 89, 93, 95, 100
SSS2EODS field

use of 90, 91
SSS2FSWB field

use of 90
SSS2FSWT field

use of 90
SSS2JEST field

use of 85
SSS2PUGE request

use of 84
SSS2RBA field

use of 100

282 z/OS V1R4.0 MVS Using the Subsystem Interface

SSS2RET2 field
use of 86

SSS2RLSE field
use of 93

SSS2ROUT field
use of 93

SSS2SETC field
use of 93

SSS2SWBT field
use of 90

SSS2SWTU field
use of 90

SSS2UFLG field
use of 101

SSS2WRSN field
use of 90

SSS2WRTN field
use of 90

SSSOFOR8 field
use of 19

SSSOFORM field
use of 19

SSSOWTRC field
contents of on return from the IEFSSREQ macro 32

SSWT contents for a multi-line WTO 194
SSWT contents for a WTOR (always single-line) 198
START command

using to initialize your subsystem 158
started task

initiating a started task 8
subsystem 1

broadcast request 153
considerations 3
defining to MVS 156
description 1
diagnosing errors 239
directed request 153
error handling 239
examples 245
functions 153
how to name it 156
IEFSSREQ macro 9
initialization routine 164
initializing 158
integrity 154
MVS use 153
passing accounting parameters 160
recovery 154
request types 2, 153

broadcast request 2
directed request 2

requesting a function 7
setting up your subsystem 153
subsystem affinity service 175
types 1

primary 1
secondary 1

writing your own subsystem 153
subsystem affinity service

description 175
SSAFF OBTAIN request 176

subsystem affinity service (continued)
SSAFF SET request 176

subsystem communication vector table
See SSCVT

subsystem identification block
See SSIB

subsystem initialization routine
description 158
examples 158

subsystem options block
See SSOB

subsystem requests
broadcast 2
directed 2

SWBTUREQ macro
use of in Function Code 79 90

SYSOUT Application Program Interface (SAPI) - SSI
function code 79

description 84
sysplex

command processing SSI call - SSI function code
10 207

system message
controlling 188
with SSI function code 9 188

system symbols
command processing SSI call - SSI function code

10 207
system variable output section

contents 62
description 62

T
tape device selection call - SSI function code 78

description 225
troubleshoot errors in your subsystem

common types of errors 239
description 239
handling initialization errors 239

TSO/E user
initiating a LOGON 9

types of subsystem requests
broadcast 2
directed 2

U
unique attributes of the SSI

description 1

V
verify subsystem function call - SSI function code 15

description 40
VTSCREAT SSVT build indicator 261
VTSGLOAD load-to-global indicator 260

Index 283

W
Wildcards

SSI Function Code 79 85
WQE (major WQE) contents for the first line of a

multi-line WTO 195
WQE (minor WQE) contents for subsequent lines of a

multi-line WTO 197
WQE contents for a single-line WTO 192
write your own subsystem

considerations 3
writer communication area

contents 32
description 32

writing your own subsystem
decisions you must make 158
recovery and integrity considerations 154
steps 153

WTO/WTOR call - SSI function code 9
description 188

WTOR (always single-line)
SSWT contents 198

284 z/OS V1R4.0 MVS Using the Subsystem Interface

Readers’ Comments — We’d Like to Hear from You

z/OS
MVS Using the Subsystem Interface

Publication No. SA22-7642-01

Overall, how satisfied are you with the information in this book?

Very Satisfied Satisfied Neutral Dissatisfied Very Dissatisfied
Overall satisfaction h h h h h

How satisfied are you that the information in this book is:

Very Satisfied Satisfied Neutral Dissatisfied Very Dissatisfied
Accurate h h h h h

Complete h h h h h

Easy to find h h h h h

Easy to understand h h h h h

Well organized h h h h h

Applicable to your tasks h h h h h

Please tell us how we can improve this book:

Thank you for your responses. May we contact you? h Yes h No

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments in any
way it believes appropriate without incurring any obligation to you.

Name Address

Company or Organization

Phone No.

Readers’ Comments — We’d Like to Hear from You
SA22-7642-01

SA22-7642-01

IBMR
Cut or Fold
Along Line

Cut or Fold
Along Line

Fold and Tape Please do not staple Fold and Tape

Fold and Tape Please do not staple Fold and Tape

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

IBM Corporation
Department 55JA, Mail Station P384
2455 South Road
Poughkeepsie, NY

12601-5400

_ _

_ _

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_

IBMR

Program Number: 5694-A01, 5655-G52

Printed in U.S.A.

SA22-7642-01

	Contents
	Figures
	Tables
	About this document
	Who should use this document
	How to use this document
	Where to find more information
	Using LookAt to look up message explanations
	Accessing z/OS™ licensed documents on the Internet

	Information updates on the web

	Summary of Changes
	Chapter 1. Introduction to Subsystems and the Subsystem Interface (SSI)
	What is a Subsystem?
	What is the SSI?
	Unique Attributes of the SSI
	Types of Subsystem Requests
	Controlling SSI Processing

	Why Write Your Own Subsystem?
	What is a Dynamic Subsystem?

	Chapter 2. Making a Request of a Subsystem
	Set Up the Environment
	Subsystem Options Block (SSOB)
	SSOB Function Dependent Area
	Subsystem Identification Block (SSIB)

	Make the Request with the IEFSSREQ Macro
	Check the Return Code
	Summary of Steps

	Chapter 3. SSI Function Codes Your Program Can Request
	SSI Function Code Descriptions
	Process SYSOUT Data Sets Call — SSI Function Code 1
	Type of Request
	Use Information
	Issued to
	Related SSI Codes
	Related Concepts
	Environment
	Input Register Information
	Input Parameters
	Output Register Information
	Return Code Information
	Output Parameters
	Processing Flow for Single Data Set Requests
	External Writer Considerations
	The Writer Communication Area
	Example

	Verify Subsystem Function Call — SSI Function Code 15
	Type of Request
	Issued to
	Related SSI Codes
	Related Concepts
	Environment
	Input Register Information
	Input Parameters
	Output Register Information
	Return Code Information
	Output Parameters

	Request Job ID Call — SSI Function Code 20
	Type of Request
	Use Information
	Issued to
	Related SSI Codes
	Related Concepts
	Environment
	Input Register Information
	Input Parameters
	Output Register Information
	Return Code Information
	Output Parameters
	Restrictions
	Considerations When Using the Automatic Restart Manager

	Return Job ID Call — SSI Function Code 21
	Type of Request
	Use Information
	Issued to
	Related SSI Codes
	Related Concepts
	Environment
	Input Register Information
	Input Parameters
	Output Register Information
	Return Code Information
	Output Parameters

	Request Subsystem Version Information Call — SSI Function Code 54
	Type of Request
	Use Information
	Issued to
	Related SSI Codes
	Related Concepts
	Environment
	Input Register Information
	Input Parameters
	Fixed Header Input Section
	Output Register Information
	Return Code Information
	Output Parameters
	Fixed Header Output Section
	System Variable Output Section
	Installation Variable Output Section
	Format of the Variable Output Sections
	Specifying Keywords
	Example

	JES Job Information Services— SSI Function Code 71
	JES Job Information Services Request Types
	Type of Request
	Use Information
	SPOOL Read Service
	Issued to
	Related SSI Codes
	Related Concepts
	Environment
	Input Register Information
	Input Parameters
	Output Register Information
	Return Code Information
	Output Parameters

	Notify User Message Service Call — SSI Function Code 75
	Type of Request
	Use Information
	Issued to
	Related SSI Codes
	Related Concepts
	Environment
	Input Register Information
	Input Parameters
	Output Register Information
	Return Code Information
	Output Parameters

	SYSOUT Application Program Interface (SAPI) — SSI Function Code 79
	Differences Between SSI Function Codes 1 and 79
	Requesting SAPI Processing
	SYSOUT Application Program Interface Request Types
	General Programming Considerations — Applicable to All Calls
	PUT/GET Requests
	COUNT Requests
	BULK MODIFY Requests
	Use of the Client Token
	Keeping Processed Data Sets
	Type of Request
	Use Information
	Issued to
	Related SSI Codes
	Related Concepts
	Environment
	Input Register Information
	Input Parameters
	Input-Only Fields (Optional)
	Output Register Information
	Return Code Information
	Output Parameters
	Output-Only Fields
	Job-Level Output-Only Fields

	Extended Status Function Call — SSI Function Code 80
	Extended Status Request Types
	Type of Request
	Use information
	Issued to
	Related SSI Codes
	Related Concepts
	Environment
	Input Register Information
	Input Parameters
	Output Register Information
	Return Code Information
	Output Parameters
	Job Information Elements
	SYSOUT Information Elements
	JES3 Unsupported Flags and Fields
	Example

	Chapter 4. JES Client/Server Print Interface
	Creating a CTOKEN
	Determining If You Can Request a CTOKEN
	Comparing CTOKENs
	Obtaining Status for a Data Set
	Accessing a Data Set
	Security

	Identifying a Requestor on a Header Page
	Listening for Events

	Chapter 5. Setting Up Your Subsystem
	Function Routines/Function Codes
	Environment
	Recovery and Integrity
	Placement of Function Routines

	Do You Need a Subsystem Address Space?
	Defining Your Subsystem
	Providing a Routine to Initialize Your Subsystem
	What Your Subsystem Initialization Routine Can Do
	How to Initialize Your Subsystem
	Specifying an Initialization Routine
	Using the START Command

	Passing Accounting Parameters to Your Subsystem
	Processing the SUBPARM Option
	Initializing the SMF Parameters
	Initializing the Subsystem
	Modifying the SUBPARM Value
	Using an SMF Console Command
	Using an SMF Macro

	Example

	Chapter 6. Services for Building and Using Your Subsystem
	Adding Your Subsystem
	Using the IEFSSNxx Parmlib Member
	Using the IEFSSI macro
	Using the SETSSI command

	Initializing Your Subsystem
	Coding the Initialization Routine

	Defining What Your Subsystem Can Do
	Building the SSVT

	Changing What Your Subsystem Can Do
	Enabling Your Subsystem for New Functions
	Disabling Previously Supported Functions
	Associating a New Function Routine with a Supported Function Code

	Activating Your Subsystem
	Using the IEFSSVT macro
	Using the IEFSSI macro
	Considerations
	Reactivating a Subsystem after Deactivation

	Deactivating Your Subsystem
	Swapping Subsystem Functions
	Storing and Retrieving Subsystem-specific Information
	Storing Subsystem-specific Information
	Retrieving Subsystem-specific Information

	Defining Subsystem Options
	Responding to the SETSSI Command
	Starting Your Subsystem Under the Primary Subsystem

	Querying Subsystem Information
	Using the Subsystem Query Request of the IEFSSI Macro
	Using the Display SSI Command

	Maintaining Information About the Callers of Your Subsystem
	SSAFF: Set/Obtain Subsystem Affinity

	Chapter 7. SSI Function Codes Your Subsystem Can Support
	SSI Function Code Descriptions
	End-of-Task Call — SSI Function Code 4
	Type of Request
	Use Information
	Issued to
	Related SSI Codes
	Related Concepts
	Environment
	Input Register Information
	Input Parameters
	Output Register Information
	Return Code Information

	End-of-Address Space (End-of-Memory) Call — SSI Function Code 8
	Type of Request
	Use Information
	Issued to
	Related SSI Codes
	Related Concepts
	Environment
	Input Register Information
	Input Parameters
	Output Register Information
	Return Code Information

	WTO/WTOR Call — SSI Function Code 9
	Type of Request
	Use Information
	Issued to
	Related SSI Codes
	Related Concepts
	Environment
	Input Register Information
	Input Parameters
	Output Register Information
	Return Code Information
	Output Parameters

	Command Processing Call — SSI Function Code 10
	Type of Request
	Use Information
	Issued to
	Related SSI Codes
	Related Concepts
	Environment
	Input Register Information
	Input Parameters
	Output Register Information
	Return Code Information
	Output Parameters
	Restrictions
	General Considerations

	Delete Operator Message — SSI Function Code 14
	Type of Request
	Use Information
	Issued to
	Related SSI Codes
	Related Concepts
	Environment
	Input Register Information
	Input Parameters

	Early Notification of End-of-Task Call — SSI Function Code 50
	Type of Request
	Use Information
	Issued to
	Related SSI Codes
	Related Concepts
	Environment
	Input Register Information
	Input Parameters
	Output Register Information
	Return Code Information

	Request Subsystem Version Information Call — SSI Function Code 54
	Type of Request
	Use Information
	Issued to
	Related SSI Codes
	Related Concepts
	Environment
	Input Register Information
	Input Parameters
	Output Register Information
	Return Code Information
	Output Parameters

	SMF SUBPARM Option Change Call — SSI Function Code 58
	Type of Request
	Use Information
	Issued to
	Related SSI Codes
	Related Concepts
	Environment
	Input Register Information
	Input Parameters
	Output Register Information
	Return Code Information
	Restrictions
	Example
	Installation Supplied Subsystem

	Tape Device Selection Call — SSI Function Code 78
	Type of Request
	Use Information
	Issued to
	Related SSI Codes
	Related Concepts
	Environment
	Input Register Information
	Input Parameters
	Output Register Information
	Return Code Information
	Output Parameters
	Restrictions
	Example

	Chapter 8. Troubleshooting Errors in Your Subsystem
	Handling Initialization Errors
	Handling Function Request Errors
	Capturing the System Dump
	Identifying the Type of Error
	Identifying the Problem Type when the VRA is Available
	Identifying Problem Type when the VRA is not Available

	Determining the Cause of the Error
	Identifying the Failing Subsystem
	Identifying the Requested Subsystem Function
	Identifying the Subsystem Function Routine
	Identifying the Caller of the SSI
	Identifying the Failing Exit Routine

	Appendix A. Examples — Subsystem Interface Routines
	Example 1 — Subsystem Initialization Routine (TSYSINIT)
	Example 2 — Subsystem Function Routine (WRITEIT)
	Example 3 — Subsystem Function Routine (DELETEIT)
	Example 4 — Subsystem Function Routine (LISTEN)
	Example 5 — Subsystem Requesting Routine (TSYSCALL)

	Appendix B. Using IEFJSVEC with Your Subsystem
	Defining What Your Subsystem Can Do
	Building the SSVT
	Environment
	Input Register Information
	Input Parameters
	Output Register Information
	Return Code Information
	Output Parameters

	Changing What Your Subsystem Can Do
	Enabling Your Subsystem for New Functions
	Environment
	Restrictions
	Input Register Information
	Input Parameters
	Output Register Information
	Return Code Information
	Output Parameters

	Disabling Previously Supported Functions
	Environment
	Input Register Information
	Input Parameters
	Output Register Information
	Return Code Information
	Output Parameters

	Appendix C. Accessibility
	Using assistive technologies
	Keyboard navigation of the user interface

	Notices
	Programming Interface Information
	Trademarks

	Index
	Readers’ Comments — We'd Like to Hear from You

